Anderson, G.D., Vamanamurthy M.K. and Vuorinen, M., Generalized convexity and inequal- ities, Journal of Mathematical Analysis and Applications, 335(2) (2007), 1294-1308.
Avcı, M., KavurmacıH. and Özdemir, M. E., New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171-5176
I. A. Baloch and ·I. ·I¸scan, Some Ostrowski Type Inequalities for Harmonically (s; m)- convex functions in Second Sense, International Journal of Analysis, vol. 2015 (2015), Article ID 672675, 9 pages, http://dx.doi.org/10.1155/2015/672675.
Dragomir S.S. and Agarwal, R.P., Two Inequalities for Diğerentiable Mappings and Appli- cations to Special Means of Real Numbers and to Trapezoidal Formula, Appl. Math. Lett. 11(5) (1998), 91-95.
Fang Z. B. and Shi, R., On the (p; h)-convex function and some integral inequalities, J. Inequal. Appl., 2014(45) (2014), 16 pages.
·I¸scan, ·I., New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and Applied Mathematics, 86(4) (2013), 727-746.
·I¸scan, ·I., Hermite-Hadamard Type Inequalities for p-Convex Functıons, International Journal of Analysis and Applications, Volume 11, Number 2 (2016), 137-145.
·I¸scan, ·I., Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, NTMSCI 4, No. 3, 140-150 (2016).
·I¸scan, ·I., Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 43(6) (2014), 935-942.
·I¸scan, ·I., M. Kunt, Hermite-Hadamard-Fejer Type Inequalities for Harmonically s-convex Functions via Fractional Integrals, Australian Journal of Mathematical Analysis and Appli- cations, 12(1) (2015), Article 10, 1-16.
·I¸scan, ·I., M. Aydın, S. Dikmeno¼glu, New integral inequalities via harmonically convex func- tions, Mathematics and Statistics, 3(5): 134-140, 2015. DOI: 10.13189/ms.2015.030504.
·I¸scan, ·I., On generalization of diğerent type inequalities for harmonically quasi-convex func- tions via fractional integrals, Applied Mathematics and Computation, 275 (2016) 287–298.
·I¸scan, ·I., Hermite-Hadamard and Simpson-like type inequalities for diğerentiable harmoni- cally convex functions, Journal of Mathematics, Volume 2014 (2014), Article ID 346305, 10 pages.
·I¸scan, ·I., K. Bekar and S. Numan, Hermite-Hadamard and Simpson type inequalities for diğerentiable quasi-geometrically convex functions, Turkish Journal of Analysis and Number Theory, 2014, vol. 2, no. 2, 42-46.
·I¸scan, ·I., S. Numan and K. Bekar, Hermite-Hadamard and Simpson type inequalities for diğerentiable harmonically p-functions, British Journal of Mathematics & Computer Science, 4(14) (2014), 1908-1920.
Kırmacı, U.S., Inequalities for diğerentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004), 137-146.
Kunt, M. ·I¸scan, ·I., Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab Journal of Mathematical Sciences, vol.23, pp.215-230, 2017.
Kunt, M. ·I¸scan, · I.,
Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals, Communication in Mathematical Modeling and Applications, vol.2, no.1, pp.1-15, 2017.
Kunt, M. ·I¸scan, ·I., Hermite-Hadamard type inequalities for p-convex functions via fractional integrals, Moroccan Journal of Pure and Applied Analysis, vol.3, no.1, pp.22-35, 2017.
Niculescu, C. P., Convexity according to the geometric mean, Math. Inequal. Appl., 3(2) (2000), 155-167.
Noor, M. A., Noor, K. I., Iftikhar, S., Nonconvex Functions and Integral Inequalities, Punjab University Journal of Mathematics, Vol. 47(2)(2015), 19-27.
Noor, M. A., Noor, K. I., Mihai, M. V. and Awan, M. U., Hermite-Hadamard inequalities for diğerentiable p-convex functions using hyper geometric functions, Publıcatıons De L’Instıtut Mathématıque, Nouvelle série, tome 100(114)) (2016), 251–257.
Sarıkaya, M.Z., Set, E. and Özdemir, M.E., On new inequalities of Simpson’s type for s-convex functions, Computers and Mathematics with Applications 60 (2010), 2191-2199.
Zhang K.S. and Wan, J.P., p-convex functions and their properties, Pure Appl. Math. 23(1), (2007), 130-133.
Current address : ·IMDAT ·I¸SCAN: Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100, Giresun, Turkey.
In this paper, we establish some new Simpson type inequalities for
the class of functions whose derivatives in absolute values at certain powers
are p-convex and p-concav
Anderson, G.D., Vamanamurthy M.K. and Vuorinen, M., Generalized convexity and inequal- ities, Journal of Mathematical Analysis and Applications, 335(2) (2007), 1294-1308.
Avcı, M., KavurmacıH. and Özdemir, M. E., New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171-5176
I. A. Baloch and ·I. ·I¸scan, Some Ostrowski Type Inequalities for Harmonically (s; m)- convex functions in Second Sense, International Journal of Analysis, vol. 2015 (2015), Article ID 672675, 9 pages, http://dx.doi.org/10.1155/2015/672675.
Dragomir S.S. and Agarwal, R.P., Two Inequalities for Diğerentiable Mappings and Appli- cations to Special Means of Real Numbers and to Trapezoidal Formula, Appl. Math. Lett. 11(5) (1998), 91-95.
Fang Z. B. and Shi, R., On the (p; h)-convex function and some integral inequalities, J. Inequal. Appl., 2014(45) (2014), 16 pages.
·I¸scan, ·I., New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and Applied Mathematics, 86(4) (2013), 727-746.
·I¸scan, ·I., Hermite-Hadamard Type Inequalities for p-Convex Functıons, International Journal of Analysis and Applications, Volume 11, Number 2 (2016), 137-145.
·I¸scan, ·I., Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, NTMSCI 4, No. 3, 140-150 (2016).
·I¸scan, ·I., Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 43(6) (2014), 935-942.
·I¸scan, ·I., M. Kunt, Hermite-Hadamard-Fejer Type Inequalities for Harmonically s-convex Functions via Fractional Integrals, Australian Journal of Mathematical Analysis and Appli- cations, 12(1) (2015), Article 10, 1-16.
·I¸scan, ·I., M. Aydın, S. Dikmeno¼glu, New integral inequalities via harmonically convex func- tions, Mathematics and Statistics, 3(5): 134-140, 2015. DOI: 10.13189/ms.2015.030504.
·I¸scan, ·I., On generalization of diğerent type inequalities for harmonically quasi-convex func- tions via fractional integrals, Applied Mathematics and Computation, 275 (2016) 287–298.
·I¸scan, ·I., Hermite-Hadamard and Simpson-like type inequalities for diğerentiable harmoni- cally convex functions, Journal of Mathematics, Volume 2014 (2014), Article ID 346305, 10 pages.
·I¸scan, ·I., K. Bekar and S. Numan, Hermite-Hadamard and Simpson type inequalities for diğerentiable quasi-geometrically convex functions, Turkish Journal of Analysis and Number Theory, 2014, vol. 2, no. 2, 42-46.
·I¸scan, ·I., S. Numan and K. Bekar, Hermite-Hadamard and Simpson type inequalities for diğerentiable harmonically p-functions, British Journal of Mathematics & Computer Science, 4(14) (2014), 1908-1920.
Kırmacı, U.S., Inequalities for diğerentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004), 137-146.
Kunt, M. ·I¸scan, ·I., Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab Journal of Mathematical Sciences, vol.23, pp.215-230, 2017.
Kunt, M. ·I¸scan, · I.,
Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals, Communication in Mathematical Modeling and Applications, vol.2, no.1, pp.1-15, 2017.
Kunt, M. ·I¸scan, ·I., Hermite-Hadamard type inequalities for p-convex functions via fractional integrals, Moroccan Journal of Pure and Applied Analysis, vol.3, no.1, pp.22-35, 2017.
Niculescu, C. P., Convexity according to the geometric mean, Math. Inequal. Appl., 3(2) (2000), 155-167.
Noor, M. A., Noor, K. I., Iftikhar, S., Nonconvex Functions and Integral Inequalities, Punjab University Journal of Mathematics, Vol. 47(2)(2015), 19-27.
Noor, M. A., Noor, K. I., Mihai, M. V. and Awan, M. U., Hermite-Hadamard inequalities for diğerentiable p-convex functions using hyper geometric functions, Publıcatıons De L’Instıtut Mathématıque, Nouvelle série, tome 100(114)) (2016), 251–257.
Sarıkaya, M.Z., Set, E. and Özdemir, M.E., On new inequalities of Simpson’s type for s-convex functions, Computers and Mathematics with Applications 60 (2010), 2191-2199.
Zhang K.S. and Wan, J.P., p-convex functions and their properties, Pure Appl. Math. 23(1), (2007), 130-133.
Current address : ·IMDAT ·I¸SCAN: Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100, Giresun, Turkey.
İşcan, İ., Konuk, N. K., & Kadakal, M. (2018). SOME NEW SIMPSON TYPE INEQUALITIES FOR THE p-CONVEX AND p-CONCAVE FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 252-263.
AMA
İşcan İ, Konuk NK, Kadakal M. SOME NEW SIMPSON TYPE INEQUALITIES FOR THE p-CONVEX AND p-CONCAVE FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):252-263.
Chicago
İşcan, İmdat, Nihan Kalyoncu Konuk, and Mahir Kadakal. “SOME NEW SIMPSON TYPE INEQUALITIES FOR THE P-CONVEX AND P-CONCAVE FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 252-63.
EndNote
İşcan İ, Konuk NK, Kadakal M (August 1, 2018) SOME NEW SIMPSON TYPE INEQUALITIES FOR THE p-CONVEX AND p-CONCAVE FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 252–263.
IEEE
İ. İşcan, N. K. Konuk, and M. Kadakal, “SOME NEW SIMPSON TYPE INEQUALITIES FOR THE p-CONVEX AND p-CONCAVE FUNCTIONS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 252–263, 2018.
ISNAD
İşcan, İmdat et al. “SOME NEW SIMPSON TYPE INEQUALITIES FOR THE P-CONVEX AND P-CONCAVE FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 252-263.
JAMA
İşcan İ, Konuk NK, Kadakal M. SOME NEW SIMPSON TYPE INEQUALITIES FOR THE p-CONVEX AND p-CONCAVE FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:252–263.
MLA
İşcan, İmdat et al. “SOME NEW SIMPSON TYPE INEQUALITIES FOR THE P-CONVEX AND P-CONCAVE FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 252-63.
Vancouver
İşcan İ, Konuk NK, Kadakal M. SOME NEW SIMPSON TYPE INEQUALITIES FOR THE p-CONVEX AND p-CONCAVE FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):252-63.