Year 2018,
Volume: 67 Issue: 2, 264 - 281, 01.08.2018
Süleyman Dirik
Mehmet Atçeken
Ümit Yıldırım
References
- [1] Ali, A., Othman W. A. M. and Ozel, C., Some inequalities for warped product pseudo-slant
submanifolds of nearly Kenmotsu manifolds, Journal of Inequalities and Its Applications
1(2015), 1-7, DOI-10.1186/s13660-015-0802-5.
- [2] Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roum., Nouv.
Ser. 39(1996), 183-198.
- [3] Chen, B.Y., Geometry of Slant Submanifold, Kath. ‹niv. Leuven, Dept. of Mathematics,
Leuven, 1990.
- [4] Chen, B. Y., Slant immersions, Bull. Austral. Math. Soc. 41(1990), 135-147.
- [5] Cabrerizo, J. L., Carriazo, A., Fernandez L.M., and Fernandez, M., Structure on a slant
submanifold of a contact manifold, Indian J. Pure Appl. Math. 31(2000), 857-864.
- [6] Cabrerizo, J. L., Carriazo, A., Fernandez L. M, and Fernandez, M., Slant Submanifolds in
Sasakian manifolds, Glasgow Math. J. 42(2000)
- [7] Khan, M. A., Uddin S. and Singh, K., A classiÖcation on totally umbilical proper slant
and hemi-slant submanifolds of a nearly trans-Sasakian manifold, Di§ erential GeometryDynamical
Systems, Vol.13(2011), 117-127.
- [8] AtÁeken, M., On Geometry of Submanifolds of (LCS)n-Manifolds. International Journal
of Mathematics and Mathematical Sciences Volume 2012, Article ID 304647, 11 pages
doi:10.1155/2012/304647.
- [9] AtÁeken M. and Hui, S. K., Slant and Pseudo-Slant Submanifolds in (LCS)n-manifolds,
Czechoslovak M. J, 63(138)(2013), 177-190.
- [10] AtÁeken, M. and Dirik, S., On the geometry of pseudo-slant submanifolds of a Kenmotsu
manifold, Gulf Joural of Mathematics 2(2)(2014), 51-66.
- [11] AtÁeken, M. and Dirik, S., Pseudo-slant submanifolds of nearly Kenmotsu manifold. Serdica
Mathematical Journal 41, 243-262,(2015).
- [12] Papaghuic, N., Semi-slant submanifolds of a Kaehlarian manifold, An. St. Univ. Al. I. Cuza.
Univ. Iasi. 40(2009), 55-61.rr
- [13] Dirik S. and AtÁeken, M., Pseudo-slant submanifolds of nearly Cosymplectic manifold, Turkish
Journal of Mathematics and Computer Science, vol. 2014. Article ID 20140035, 14 pages,
(2013).
- [14] Uddin, S., Ozel, C., Khan M. A. and Singh, K., Some classiÖcation result on totally umbilical
proper slant and hemi slant submanifolds of a nearly Kenmotsu manifold, International
Journal of Physical Scienses, Vol. 7(40)(2012), 5538-5544.
- [15] Uddin, S., Bernardine, R., Wong and Mustafa, A. A., Warped Product Pseudo-Slant Submanifolds
of a Nearly Cosymplectic Manifold, Hindawi Publishing Corporation Abstract and
Applied Analysis, Volume, Article ID 420890, 13 pp, doi:10.1155/2012/420890 (2012).
- [16] Khan V. A. and Khan, M. A., Pseudo-slant submanifolds of a Sasakian manifold, Indian J.
Pure Appl. Math. 38(1)(2007), 31-42.
ON THE GEOMETRY OF PSEUDO-SLANT SUBMANIFOLDS OF
A NEARLY SASAKIAN MANIFOLD
Year 2018,
Volume: 67 Issue: 2, 264 - 281, 01.08.2018
Süleyman Dirik
Mehmet Atçeken
Ümit Yıldırım
Abstract
Abstract. In this paper, we study the pseudo-slant submanifolds of a nearly
Sasakian manifold. We characteterize a totally umbilical properpseudo-slant
submanifolds and Önd that a necessary and su¢ cient condition for such submanifolds
totally geodesic. Also the integrability conditions of distributions of
pseudo-slant submanifolds of a nearly Sasakian manifold are investigated
References
- [1] Ali, A., Othman W. A. M. and Ozel, C., Some inequalities for warped product pseudo-slant
submanifolds of nearly Kenmotsu manifolds, Journal of Inequalities and Its Applications
1(2015), 1-7, DOI-10.1186/s13660-015-0802-5.
- [2] Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roum., Nouv.
Ser. 39(1996), 183-198.
- [3] Chen, B.Y., Geometry of Slant Submanifold, Kath. ‹niv. Leuven, Dept. of Mathematics,
Leuven, 1990.
- [4] Chen, B. Y., Slant immersions, Bull. Austral. Math. Soc. 41(1990), 135-147.
- [5] Cabrerizo, J. L., Carriazo, A., Fernandez L.M., and Fernandez, M., Structure on a slant
submanifold of a contact manifold, Indian J. Pure Appl. Math. 31(2000), 857-864.
- [6] Cabrerizo, J. L., Carriazo, A., Fernandez L. M, and Fernandez, M., Slant Submanifolds in
Sasakian manifolds, Glasgow Math. J. 42(2000)
- [7] Khan, M. A., Uddin S. and Singh, K., A classiÖcation on totally umbilical proper slant
and hemi-slant submanifolds of a nearly trans-Sasakian manifold, Di§ erential GeometryDynamical
Systems, Vol.13(2011), 117-127.
- [8] AtÁeken, M., On Geometry of Submanifolds of (LCS)n-Manifolds. International Journal
of Mathematics and Mathematical Sciences Volume 2012, Article ID 304647, 11 pages
doi:10.1155/2012/304647.
- [9] AtÁeken M. and Hui, S. K., Slant and Pseudo-Slant Submanifolds in (LCS)n-manifolds,
Czechoslovak M. J, 63(138)(2013), 177-190.
- [10] AtÁeken, M. and Dirik, S., On the geometry of pseudo-slant submanifolds of a Kenmotsu
manifold, Gulf Joural of Mathematics 2(2)(2014), 51-66.
- [11] AtÁeken, M. and Dirik, S., Pseudo-slant submanifolds of nearly Kenmotsu manifold. Serdica
Mathematical Journal 41, 243-262,(2015).
- [12] Papaghuic, N., Semi-slant submanifolds of a Kaehlarian manifold, An. St. Univ. Al. I. Cuza.
Univ. Iasi. 40(2009), 55-61.rr
- [13] Dirik S. and AtÁeken, M., Pseudo-slant submanifolds of nearly Cosymplectic manifold, Turkish
Journal of Mathematics and Computer Science, vol. 2014. Article ID 20140035, 14 pages,
(2013).
- [14] Uddin, S., Ozel, C., Khan M. A. and Singh, K., Some classiÖcation result on totally umbilical
proper slant and hemi slant submanifolds of a nearly Kenmotsu manifold, International
Journal of Physical Scienses, Vol. 7(40)(2012), 5538-5544.
- [15] Uddin, S., Bernardine, R., Wong and Mustafa, A. A., Warped Product Pseudo-Slant Submanifolds
of a Nearly Cosymplectic Manifold, Hindawi Publishing Corporation Abstract and
Applied Analysis, Volume, Article ID 420890, 13 pp, doi:10.1155/2012/420890 (2012).
- [16] Khan V. A. and Khan, M. A., Pseudo-slant submanifolds of a Sasakian manifold, Indian J.
Pure Appl. Math. 38(1)(2007), 31-42.