Research Article
BibTex RIS Cite

On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part

Year 2019, Volume: 68 Issue: 2, 1273 - 1288, 01.08.2019
https://doi.org/10.31801/cfsuasmas.419098

Abstract

This paper deals with the inverse spectral problem consisting in the reconstruction of a finite dissipative Jacobi matrix with a rank-one imaginary part from its eigenvalues. Necessary and sufficient conditions are formulated for a prescribed collection of complex numbers to be the spectrum of a finite dissipative Jacobi matrix with a rank-one imaginary part. Uniqueness of the matrix having prescribed eigenvalues is shown and an algorithm for reconstruction of the matrix from prescribed eigenvalues is given.

References

  • Arlinskii, Yu. and Tsekanovskii, E., Non-self-adjoint Jacobi matrices with a rank-one imaginary part, J. Funct. Anal., 241 (2006), 383--438.
  • Boley, D. and Golub, G. H., A survey of matrix inverse eigenvalue problems, Inverse Problems, 3 (1987), 595--622.
  • de Boor, C. and Golub, G. H., The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl., 21 (1978), 245--260.
  • Fuhrmann, P. A., A Polynomial Approach to Linear Algebra, Second Edition, Springer, New York, 2012.
  • Gelfand, I. M. and Levitan, B. M., On the determination of a differential equation from its spectral function, Izv. Akad. Nauk, Ser. Mat., 15 (1951), 309--360 (Russian); Engl. transl., Amer. Math. Soc. Transl., (2) 1 (1955), 253--304.
  • Gesztesy, F. and Simon, B., M-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, J. Anal. Math ., 73 (1997), 267--297.
  • Gray, L. J. and Wilson, D. G., Construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 14 (1976), 131--134.
  • Guseinov, G. Sh., Construction of a complex Jacobi matrix from two-spectra, Hacettepe J. Math. Stat., 40 (2011), 297--303.
  • Guseinov, G. Sh., On an inverse problem for two spectra of finite Jacobi matrices, Appl. Math. Comput., 218 (2012), 7573--7589. Guseinov, G. Sh., On a discrete inverse problem for two spectra, Discrete Dynamics in Nature and Society, 2012 (2012), Article ID 956407, 14 pages.
  • Hald, O. H., Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl., 14 (1976), 63--85.
  • Hochstadt, H., On some inverse problems in matrix theory, Arch. Math., 18 (1967), 201--207.
  • Hochstadt, H., On construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 8 (1974), 435--446. Huseynov, A. and Guseinov, G. Sh., Solution of the finite complex Toda lattice by the method of inverse spectral problem, Appl. Math. Comput., 219 (2013), 5550--5563.
  • Teschl, G., Jacobi Operators and Completely Integrable Nonlinear Lattices, vol. 72 of Mathematical Surveys and Monographs, American Mathematical Society, 2000.
  • Ergun, E. and Huseynov, A., On an Inverse Problem for a Quadratic Eigenvalue Problem, Int. J. Difference Equ., vol. 12, 1 (2017), 13--26.
Year 2019, Volume: 68 Issue: 2, 1273 - 1288, 01.08.2019
https://doi.org/10.31801/cfsuasmas.419098

Abstract

References

  • Arlinskii, Yu. and Tsekanovskii, E., Non-self-adjoint Jacobi matrices with a rank-one imaginary part, J. Funct. Anal., 241 (2006), 383--438.
  • Boley, D. and Golub, G. H., A survey of matrix inverse eigenvalue problems, Inverse Problems, 3 (1987), 595--622.
  • de Boor, C. and Golub, G. H., The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl., 21 (1978), 245--260.
  • Fuhrmann, P. A., A Polynomial Approach to Linear Algebra, Second Edition, Springer, New York, 2012.
  • Gelfand, I. M. and Levitan, B. M., On the determination of a differential equation from its spectral function, Izv. Akad. Nauk, Ser. Mat., 15 (1951), 309--360 (Russian); Engl. transl., Amer. Math. Soc. Transl., (2) 1 (1955), 253--304.
  • Gesztesy, F. and Simon, B., M-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, J. Anal. Math ., 73 (1997), 267--297.
  • Gray, L. J. and Wilson, D. G., Construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 14 (1976), 131--134.
  • Guseinov, G. Sh., Construction of a complex Jacobi matrix from two-spectra, Hacettepe J. Math. Stat., 40 (2011), 297--303.
  • Guseinov, G. Sh., On an inverse problem for two spectra of finite Jacobi matrices, Appl. Math. Comput., 218 (2012), 7573--7589. Guseinov, G. Sh., On a discrete inverse problem for two spectra, Discrete Dynamics in Nature and Society, 2012 (2012), Article ID 956407, 14 pages.
  • Hald, O. H., Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl., 14 (1976), 63--85.
  • Hochstadt, H., On some inverse problems in matrix theory, Arch. Math., 18 (1967), 201--207.
  • Hochstadt, H., On construction of a Jacobi matrix from spectral data, Linear Algebra Appl., 8 (1974), 435--446. Huseynov, A. and Guseinov, G. Sh., Solution of the finite complex Toda lattice by the method of inverse spectral problem, Appl. Math. Comput., 219 (2013), 5550--5563.
  • Teschl, G., Jacobi Operators and Completely Integrable Nonlinear Lattices, vol. 72 of Mathematical Surveys and Monographs, American Mathematical Society, 2000.
  • Ergun, E. and Huseynov, A., On an Inverse Problem for a Quadratic Eigenvalue Problem, Int. J. Difference Equ., vol. 12, 1 (2017), 13--26.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Ebru Ergun 0000-0003-4873-6191

Publication Date August 1, 2019
Submission Date April 27, 2018
Acceptance Date August 7, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Ergun, E. (2019). On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1273-1288. https://doi.org/10.31801/cfsuasmas.419098
AMA Ergun E. On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1273-1288. doi:10.31801/cfsuasmas.419098
Chicago Ergun, Ebru. “On the Inverse Problem for Finite Dissipative Jacobi Matrices With a Rank-One Imaginary Part”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1273-88. https://doi.org/10.31801/cfsuasmas.419098.
EndNote Ergun E (August 1, 2019) On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1273–1288.
IEEE E. Ergun, “On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1273–1288, 2019, doi: 10.31801/cfsuasmas.419098.
ISNAD Ergun, Ebru. “On the Inverse Problem for Finite Dissipative Jacobi Matrices With a Rank-One Imaginary Part”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1273-1288. https://doi.org/10.31801/cfsuasmas.419098.
JAMA Ergun E. On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1273–1288.
MLA Ergun, Ebru. “On the Inverse Problem for Finite Dissipative Jacobi Matrices With a Rank-One Imaginary Part”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1273-88, doi:10.31801/cfsuasmas.419098.
Vancouver Ergun E. On the inverse problem for finite dissipative Jacobi matrices with a rank-one imaginary part. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1273-88.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.