BibTex RIS Kaynak Göster
Yıl 2009, Cilt: 58 Sayı: 1, 9 - 16, 01.02.2009
https://doi.org/10.1501/Commua1_0000000642

Öz

Kaynakça

  • N. Agayev and A. Harmanci, On semicommutative modules and rings, Kyungpook Math. J., 47(2007)(1), 21-30.
  • F.W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1974.
  • A.M. Buhphang and M.B. Rege, Semi-commutative module and Armendariz modules, Arab. J. Math. Sci., (8) (2002), 53-65.
  • W.X. Chen and W.T. Tong, A note on skew Armendariz rings, Com. Algebra, 33 (2005), 1137-1140.
  • C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151 (3)(2000), 215-226.
  • T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras, and abelian groups, 365– 377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
  • C. Zhang and J. Chen, skew Armendariz modules and semicommu- tative modules, Tai wanese J. Math., 12 (2) (2008), 473-486.
  • Current address :, N. Agayev: Department of Pedagogy, Qafqaz University, Baku, Azerbaijan
  • S. Halıcıo¼glu: Department of Mathematics, Ankara University, Ankara, Turkey
  • A.Harmanci: Department of Mathematics,Hacettepe University, Ankara, Turkey E-mail address : nazimagayev@qafqaz.edu.az, halici@science.ankara.edu.tr
  • harmanci@hacettepe.edu.tr

ON REDUCED MODULES

Yıl 2009, Cilt: 58 Sayı: 1, 9 - 16, 01.02.2009
https://doi.org/10.1501/Commua1_0000000642

Öz

Abstract. Let α be an endomorphism of an arbitrary ring R with identity.
In this note, we concern the relations between polynomial and power series
extensions of a reduced module. Among others we prove that a ring R is α-
reduced if and only if every áat right R-module is -reduced, and for a module
M, M[x] is α-reduced if and only if M[x; x1
] is α-reduced.

Kaynakça

  • N. Agayev and A. Harmanci, On semicommutative modules and rings, Kyungpook Math. J., 47(2007)(1), 21-30.
  • F.W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1974.
  • A.M. Buhphang and M.B. Rege, Semi-commutative module and Armendariz modules, Arab. J. Math. Sci., (8) (2002), 53-65.
  • W.X. Chen and W.T. Tong, A note on skew Armendariz rings, Com. Algebra, 33 (2005), 1137-1140.
  • C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151 (3)(2000), 215-226.
  • T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras, and abelian groups, 365– 377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
  • C. Zhang and J. Chen, skew Armendariz modules and semicommu- tative modules, Tai wanese J. Math., 12 (2) (2008), 473-486.
  • Current address :, N. Agayev: Department of Pedagogy, Qafqaz University, Baku, Azerbaijan
  • S. Halıcıo¼glu: Department of Mathematics, Ankara University, Ankara, Turkey
  • A.Harmanci: Department of Mathematics,Hacettepe University, Ankara, Turkey E-mail address : nazimagayev@qafqaz.edu.az, halici@science.ankara.edu.tr
  • harmanci@hacettepe.edu.tr
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

N. Agayev Bu kişi benim

S. Halıcıoğlu Bu kişi benim

A. Harmancı Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 58 Sayı: 1

Kaynak Göster

APA Agayev, N., Halıcıoğlu, S., & Harmancı, A. (2009). ON REDUCED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 58(1), 9-16. https://doi.org/10.1501/Commua1_0000000642
AMA Agayev N, Halıcıoğlu S, Harmancı A. ON REDUCED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Şubat 2009;58(1):9-16. doi:10.1501/Commua1_0000000642
Chicago Agayev, N., S. Halıcıoğlu, ve A. Harmancı. “ON REDUCED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58, sy. 1 (Şubat 2009): 9-16. https://doi.org/10.1501/Commua1_0000000642.
EndNote Agayev N, Halıcıoğlu S, Harmancı A (01 Şubat 2009) ON REDUCED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58 1 9–16.
IEEE N. Agayev, S. Halıcıoğlu, ve A. Harmancı, “ON REDUCED MODULES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 58, sy. 1, ss. 9–16, 2009, doi: 10.1501/Commua1_0000000642.
ISNAD Agayev, N. vd. “ON REDUCED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58/1 (Şubat 2009), 9-16. https://doi.org/10.1501/Commua1_0000000642.
JAMA Agayev N, Halıcıoğlu S, Harmancı A. ON REDUCED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58:9–16.
MLA Agayev, N. vd. “ON REDUCED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 58, sy. 1, 2009, ss. 9-16, doi:10.1501/Commua1_0000000642.
Vancouver Agayev N, Halıcıoğlu S, Harmancı A. ON REDUCED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58(1):9-16.

Cited By

Generalised reduced modules
Rendiconti del Circolo Matematico di Palermo Series 2
https://doi.org/10.1007/s12215-021-00686-8

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.