BibTex RIS Cite
Year 2009, Volume: 58 Issue: 1, 9 - 16, 01.02.2009
https://doi.org/10.1501/Commua1_0000000642

Abstract

References

  • N. Agayev and A. Harmanci, On semicommutative modules and rings, Kyungpook Math. J., 47(2007)(1), 21-30.
  • F.W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1974.
  • A.M. Buhphang and M.B. Rege, Semi-commutative module and Armendariz modules, Arab. J. Math. Sci., (8) (2002), 53-65.
  • W.X. Chen and W.T. Tong, A note on skew Armendariz rings, Com. Algebra, 33 (2005), 1137-1140.
  • C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151 (3)(2000), 215-226.
  • T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras, and abelian groups, 365– 377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
  • C. Zhang and J. Chen, skew Armendariz modules and semicommu- tative modules, Tai wanese J. Math., 12 (2) (2008), 473-486.
  • Current address :, N. Agayev: Department of Pedagogy, Qafqaz University, Baku, Azerbaijan
  • S. Halıcıo¼glu: Department of Mathematics, Ankara University, Ankara, Turkey
  • A.Harmanci: Department of Mathematics,Hacettepe University, Ankara, Turkey E-mail address : nazimagayev@qafqaz.edu.az, halici@science.ankara.edu.tr
  • harmanci@hacettepe.edu.tr

ON REDUCED MODULES

Year 2009, Volume: 58 Issue: 1, 9 - 16, 01.02.2009
https://doi.org/10.1501/Commua1_0000000642

Abstract

Abstract. Let α be an endomorphism of an arbitrary ring R with identity.
In this note, we concern the relations between polynomial and power series
extensions of a reduced module. Among others we prove that a ring R is α-
reduced if and only if every áat right R-module is -reduced, and for a module
M, M[x] is α-reduced if and only if M[x; x1
] is α-reduced.

References

  • N. Agayev and A. Harmanci, On semicommutative modules and rings, Kyungpook Math. J., 47(2007)(1), 21-30.
  • F.W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1974.
  • A.M. Buhphang and M.B. Rege, Semi-commutative module and Armendariz modules, Arab. J. Math. Sci., (8) (2002), 53-65.
  • W.X. Chen and W.T. Tong, A note on skew Armendariz rings, Com. Algebra, 33 (2005), 1137-1140.
  • C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151 (3)(2000), 215-226.
  • T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras, and abelian groups, 365– 377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
  • C. Zhang and J. Chen, skew Armendariz modules and semicommu- tative modules, Tai wanese J. Math., 12 (2) (2008), 473-486.
  • Current address :, N. Agayev: Department of Pedagogy, Qafqaz University, Baku, Azerbaijan
  • S. Halıcıo¼glu: Department of Mathematics, Ankara University, Ankara, Turkey
  • A.Harmanci: Department of Mathematics,Hacettepe University, Ankara, Turkey E-mail address : nazimagayev@qafqaz.edu.az, halici@science.ankara.edu.tr
  • harmanci@hacettepe.edu.tr
There are 11 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

N. Agayev This is me

S. Halıcıoğlu This is me

A. Harmancı This is me

Publication Date February 1, 2009
Published in Issue Year 2009 Volume: 58 Issue: 1

Cite

APA Agayev, N., Halıcıoğlu, S., & Harmancı, A. (2009). ON REDUCED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 58(1), 9-16. https://doi.org/10.1501/Commua1_0000000642
AMA Agayev N, Halıcıoğlu S, Harmancı A. ON REDUCED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2009;58(1):9-16. doi:10.1501/Commua1_0000000642
Chicago Agayev, N., S. Halıcıoğlu, and A. Harmancı. “ON REDUCED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58, no. 1 (February 2009): 9-16. https://doi.org/10.1501/Commua1_0000000642.
EndNote Agayev N, Halıcıoğlu S, Harmancı A (February 1, 2009) ON REDUCED MODULES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58 1 9–16.
IEEE N. Agayev, S. Halıcıoğlu, and A. Harmancı, “ON REDUCED MODULES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 58, no. 1, pp. 9–16, 2009, doi: 10.1501/Commua1_0000000642.
ISNAD Agayev, N. et al. “ON REDUCED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58/1 (February 2009), 9-16. https://doi.org/10.1501/Commua1_0000000642.
JAMA Agayev N, Halıcıoğlu S, Harmancı A. ON REDUCED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58:9–16.
MLA Agayev, N. et al. “ON REDUCED MODULES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 58, no. 1, 2009, pp. 9-16, doi:10.1501/Commua1_0000000642.
Vancouver Agayev N, Halıcıoğlu S, Harmancı A. ON REDUCED MODULES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58(1):9-16.

Cited By

Generalised reduced modules
Rendiconti del Circolo Matematico di Palermo Series 2
https://doi.org/10.1007/s12215-021-00686-8

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.