BibTex RIS Kaynak Göster
Yıl 2009, Cilt: 58 Sayı: 1, 23 - 28, 01.02.2009
https://doi.org/10.1501/Commua1_0000000644

Öz

Kaynakça

  • Dominic Rochon and S.Tremblay, Bicomplex Quantum Mechanics: II. The Hilbert Space Adv. appl. Cliğord alg. DOI 10.1007/s00006-003-0000 , Birkhauser Verlag Basel/Switzerland, (2006)
  • Dominic Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic num- bers,Anal. Univ.Oradea,fasc.math.,vol.11,71-110 (2004).
  • O.P. Agrawal, Hamilton Operators and Dual Number Quaternions in Spatial Kinematics, Mec-Mach Theory (22),569-575(1987).
  • H.Kabadayı, Y.Yaylı , Homothetic motion at E4with bicomplex numbers, Applied Mathe- matics Letters (Submitted)
  • Y. Yaylı, Homothetic motions at E, Mech. Mach Theory 27(3), 303-305 (1992).
  • G.B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc: New York. I (1)-44(1) . (1991).
  • Barrett O’Neill Semi-Riemannian Geometry, Pure and Applied Mathematics, 103 .Academic Pres, Inc. [Harcourt Brace Jovanovich, Publishers] New York. (1983). Current address : Department of Mathematics, Faculty of Science, University of Ankara, Tan
  • do¼gan, Ankara, TURKEY E-mail address : babadagf@science.ankara.edu.tr,yayli@science.ankara.edu.tr
  • ekmekci@science.ankara.edu.tr

HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS

Yıl 2009, Cilt: 58 Sayı: 1, 23 - 28, 01.02.2009
https://doi.org/10.1501/Commua1_0000000644

Öz

In this study, one of the concepts of conjugate which is defined[1] for bicomplex numbers is investigated. In this case, the metric, in fourdimensional semi-Euclidean space E, has been defined by the help of theconcept of the conjugate.We define a motion in E2with the help of themetric in bicomplex numbers. We show that the motions de…ned by a curvelying on a hypersurface M of Eare homothetic motions . Furthermore, it isshown that the motion defined by a regular curve of order r and derivationsof the curve on the hypersurface M has only one acceleration centre of order(r-1) at every t- instant

Kaynakça

  • Dominic Rochon and S.Tremblay, Bicomplex Quantum Mechanics: II. The Hilbert Space Adv. appl. Cliğord alg. DOI 10.1007/s00006-003-0000 , Birkhauser Verlag Basel/Switzerland, (2006)
  • Dominic Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic num- bers,Anal. Univ.Oradea,fasc.math.,vol.11,71-110 (2004).
  • O.P. Agrawal, Hamilton Operators and Dual Number Quaternions in Spatial Kinematics, Mec-Mach Theory (22),569-575(1987).
  • H.Kabadayı, Y.Yaylı , Homothetic motion at E4with bicomplex numbers, Applied Mathe- matics Letters (Submitted)
  • Y. Yaylı, Homothetic motions at E, Mech. Mach Theory 27(3), 303-305 (1992).
  • G.B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc: New York. I (1)-44(1) . (1991).
  • Barrett O’Neill Semi-Riemannian Geometry, Pure and Applied Mathematics, 103 .Academic Pres, Inc. [Harcourt Brace Jovanovich, Publishers] New York. (1983). Current address : Department of Mathematics, Faculty of Science, University of Ankara, Tan
  • do¼gan, Ankara, TURKEY E-mail address : babadagf@science.ankara.edu.tr,yayli@science.ankara.edu.tr
  • ekmekci@science.ankara.edu.tr
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Faik Babadağ Bu kişi benim

Yusuf Yaylı Bu kişi benim

Nejat Ekmekçi Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 58 Sayı: 1

Kaynak Göster

APA Babadağ, F., Yaylı, Y., & Ekmekçi, N. (2009). HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 58(1), 23-28. https://doi.org/10.1501/Commua1_0000000644
AMA Babadağ F, Yaylı Y, Ekmekçi N. HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Şubat 2009;58(1):23-28. doi:10.1501/Commua1_0000000644
Chicago Babadağ, Faik, Yusuf Yaylı, ve Nejat Ekmekçi. “HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58, sy. 1 (Şubat 2009): 23-28. https://doi.org/10.1501/Commua1_0000000644.
EndNote Babadağ F, Yaylı Y, Ekmekçi N (01 Şubat 2009) HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58 1 23–28.
IEEE F. Babadağ, Y. Yaylı, ve N. Ekmekçi, “HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 58, sy. 1, ss. 23–28, 2009, doi: 10.1501/Commua1_0000000644.
ISNAD Babadağ, Faik vd. “HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58/1 (Şubat 2009), 23-28. https://doi.org/10.1501/Commua1_0000000644.
JAMA Babadağ F, Yaylı Y, Ekmekçi N. HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58:23–28.
MLA Babadağ, Faik vd. “HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 58, sy. 1, 2009, ss. 23-28, doi:10.1501/Commua1_0000000644.
Vancouver Babadağ F, Yaylı Y, Ekmekçi N. HOMOTHETIC MOTIONS AND BICOMPLEX NUMBERS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58(1):23-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.