BibTex RIS Cite
Year 2009, Volume: 58 Issue: 1, 29 - 38, 01.02.2009
https://doi.org/10.1501/Commua1_0000000645

Abstract

References

  • Barros M., General helices and a theorem of Lancert. Proc AMS 1997;125:1503–9.
  • Camcı Ç, Ilarslan, K., Kula L, Hacısaliho¼glu H.H. Harmonic curvatures and generalized helices in En. Chaos, Solitons & Fractals 2007. doi:10.1016/j.chaos.2007.11.001.
  • Gluk, H.,Higher curvatures of curves in Euclidean space, Amer. Math. Month. 73 (1966), 704.
  • Gök ·I, CamcıÇ and Hacısaliho¼glu H.H, Vn-Slant helices in Euclidean n-space En, submitted to publish. Hacisalihoglu, H.H. Diferensiyel Geometri. Ankara University Faculty of Science Press, 1993
  • Hayden HA. On a general helix in a Riemannian n-space. Proc London Math Soc (2) ;32:37–45. ·Ilarslan, K. Some special curves on non-Euclidean manifolds, Ph.D. Thesis, Ankara Univer- sity, Graduate School of Natural and Applied Sciences, 2002.
  • Izumuya S., and Takeuchi, N., New special curves and developable surfaces, Turk. J. Math. Vol. 28, (2004), 153-163.
  • Kuhnel W. Diğerential Geometry: Curves-Surfaces-Manifolds. Wiesbaden: Braunchweig; Kula L., and Yaylı, Y., On slant helix and its spherical indicatrix, Appl. Math. and Comp. Vol. 169 (2005), 600-607.
  • Monterde J. Curves with constant curvature ratios. Available from: arXiv:math.DG/0412323 vol. 16. December 20
  • Önder, M., Kazaz M., Kocayi¼git, H., and Kılıç, O., B2slant helix in Euclidean 4-space E4;Int. J. Cont. Math. Sci. vol. 3, no.29 (2008), 1433-1440.
  • Özdamar, E., and Hacısaliho¼glu H.H, A characterization of inclined curves in Euclidean n- space, Communication de la faculte des sciences de l’ Universite d’ Ankara, series A1, 24A1 (1975),15-22.
  • Romero-Fuster MC, Sanabria-Codesal E. Generalized helices, twistings and *attenings of curves in n-space. 10th School on Diğerential Geometry (Portuguese) (Belo Horizonte, 1998). Math Contemp 1999;17:267–80.
  • Song H.H. On proper helix in pseudo-Riemannian submanifolds, J.Geom. 91(2008), 150-168.
  • Struik DJ. Lectures on Classical Diğerential Geometry. New York: Dover; 1988 Tamura, M., Surfaces which contain helical geodesics in the sphere.
  • Mem.Fac.Sci.Eng.Shimane Unıv.Series B: Mathematical Science 37 (2004) ;59-65
  • Uribe-Vargas Ricardo. On singularities, “perestroikas” and diğerential geometry of space curves. Enseign Math (2) 2004; 50(1-2): 69-101
  • Current address : ·Ismail Gök, H. Hilmi Hacısaliho¼glu: Department of Mathematics, Faculty of Science, University of Ankara, Tando¼gan, Ankara, TURKEY Çetin camcı: Department of Mathematics, Faculty of Sciences and Arts, University of Çanakkale Onsekizmart, Çanakkale, TURKEY E-mail address : igok@science.ankara.edu.tr,ccamci@comu.edu.tr hacisali@science.ankara.edu.tr

Vn SLANT HELICES IN MINKOWSKI n-SPACE En1

Year 2009, Volume: 58 Issue: 1, 29 - 38, 01.02.2009
https://doi.org/10.1501/Commua1_0000000645

Abstract

In this paper we give a definition of harmonic curvature functionsin terms of Vnand define a new kind of slant helix which we call Vnslant helixin n dimensional Minkowski space Enby using the new harmonic curvaturefunctions : Also we define a vector field DLwhich we call Darboux vector field of Vnslant helix in n dimensional Minkowski space Enand we give somecharacterizations about slant helices

References

  • Barros M., General helices and a theorem of Lancert. Proc AMS 1997;125:1503–9.
  • Camcı Ç, Ilarslan, K., Kula L, Hacısaliho¼glu H.H. Harmonic curvatures and generalized helices in En. Chaos, Solitons & Fractals 2007. doi:10.1016/j.chaos.2007.11.001.
  • Gluk, H.,Higher curvatures of curves in Euclidean space, Amer. Math. Month. 73 (1966), 704.
  • Gök ·I, CamcıÇ and Hacısaliho¼glu H.H, Vn-Slant helices in Euclidean n-space En, submitted to publish. Hacisalihoglu, H.H. Diferensiyel Geometri. Ankara University Faculty of Science Press, 1993
  • Hayden HA. On a general helix in a Riemannian n-space. Proc London Math Soc (2) ;32:37–45. ·Ilarslan, K. Some special curves on non-Euclidean manifolds, Ph.D. Thesis, Ankara Univer- sity, Graduate School of Natural and Applied Sciences, 2002.
  • Izumuya S., and Takeuchi, N., New special curves and developable surfaces, Turk. J. Math. Vol. 28, (2004), 153-163.
  • Kuhnel W. Diğerential Geometry: Curves-Surfaces-Manifolds. Wiesbaden: Braunchweig; Kula L., and Yaylı, Y., On slant helix and its spherical indicatrix, Appl. Math. and Comp. Vol. 169 (2005), 600-607.
  • Monterde J. Curves with constant curvature ratios. Available from: arXiv:math.DG/0412323 vol. 16. December 20
  • Önder, M., Kazaz M., Kocayi¼git, H., and Kılıç, O., B2slant helix in Euclidean 4-space E4;Int. J. Cont. Math. Sci. vol. 3, no.29 (2008), 1433-1440.
  • Özdamar, E., and Hacısaliho¼glu H.H, A characterization of inclined curves in Euclidean n- space, Communication de la faculte des sciences de l’ Universite d’ Ankara, series A1, 24A1 (1975),15-22.
  • Romero-Fuster MC, Sanabria-Codesal E. Generalized helices, twistings and *attenings of curves in n-space. 10th School on Diğerential Geometry (Portuguese) (Belo Horizonte, 1998). Math Contemp 1999;17:267–80.
  • Song H.H. On proper helix in pseudo-Riemannian submanifolds, J.Geom. 91(2008), 150-168.
  • Struik DJ. Lectures on Classical Diğerential Geometry. New York: Dover; 1988 Tamura, M., Surfaces which contain helical geodesics in the sphere.
  • Mem.Fac.Sci.Eng.Shimane Unıv.Series B: Mathematical Science 37 (2004) ;59-65
  • Uribe-Vargas Ricardo. On singularities, “perestroikas” and diğerential geometry of space curves. Enseign Math (2) 2004; 50(1-2): 69-101
  • Current address : ·Ismail Gök, H. Hilmi Hacısaliho¼glu: Department of Mathematics, Faculty of Science, University of Ankara, Tando¼gan, Ankara, TURKEY Çetin camcı: Department of Mathematics, Faculty of Sciences and Arts, University of Çanakkale Onsekizmart, Çanakkale, TURKEY E-mail address : igok@science.ankara.edu.tr,ccamci@comu.edu.tr hacisali@science.ankara.edu.tr
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

İsmail Gök This is me

Çetin Camcı This is me

Hilmi Hacısalıhoğlu H. This is me

Publication Date February 1, 2009
Published in Issue Year 2009 Volume: 58 Issue: 1

Cite

APA Gök, İ., Camcı, Ç., & Hacısalıhoğlu H., H. (2009). Vn SLANT HELICES IN MINKOWSKI n-SPACE En1. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 58(1), 29-38. https://doi.org/10.1501/Commua1_0000000645
AMA Gök İ, Camcı Ç, Hacısalıhoğlu H. H. Vn SLANT HELICES IN MINKOWSKI n-SPACE En1. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2009;58(1):29-38. doi:10.1501/Commua1_0000000645
Chicago Gök, İsmail, Çetin Camcı, and Hilmi Hacısalıhoğlu H. “Vn SLANT HELICES IN MINKOWSKI N-SPACE En1”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58, no. 1 (February 2009): 29-38. https://doi.org/10.1501/Commua1_0000000645.
EndNote Gök İ, Camcı Ç, Hacısalıhoğlu H. H (February 1, 2009) Vn SLANT HELICES IN MINKOWSKI n-SPACE En1. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58 1 29–38.
IEEE İ. Gök, Ç. Camcı, and H. Hacısalıhoğlu H., “Vn SLANT HELICES IN MINKOWSKI n-SPACE En1”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 58, no. 1, pp. 29–38, 2009, doi: 10.1501/Commua1_0000000645.
ISNAD Gök, İsmail et al. “Vn SLANT HELICES IN MINKOWSKI N-SPACE En1”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 58/1 (February 2009), 29-38. https://doi.org/10.1501/Commua1_0000000645.
JAMA Gök İ, Camcı Ç, Hacısalıhoğlu H. H. Vn SLANT HELICES IN MINKOWSKI n-SPACE En1. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58:29–38.
MLA Gök, İsmail et al. “Vn SLANT HELICES IN MINKOWSKI N-SPACE En1”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 58, no. 1, 2009, pp. 29-38, doi:10.1501/Commua1_0000000645.
Vancouver Gök İ, Camcı Ç, Hacısalıhoğlu H. H. Vn SLANT HELICES IN MINKOWSKI n-SPACE En1. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2009;58(1):29-38.

Cited By

Null W-slant helices inE13
Journal of Mathematical Analysis and Applications
https://doi.org/10.1016/j.jmaa.2014.05.057

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.