BibTex RIS Cite

Unit dual split quaternions and arcs of dual hyperbolic spherical triangles

Year 2015, Volume: 64 Issue: 2, 35 - 45, 01.08.2015
https://doi.org/10.1501/Commua1_0000000731

Abstract

In this paper we obtain the cosine hyperbolic and sine hyperbolic
rules for a dual hyperbolic spherical triangle T(A; ~ B; ~ C~) whose arcs are represented by dual split quaternions.

References

  • S. Altmann, “Rotations, Quaternions, and Double Groups”. Clarendon Press, Oxford 1972.
  • R. Ablamowicz and G. Sobczyky, “Lectures on Cliğord (Geometric) Algebras and Applica- tions” Birkhäuser, Boston 2004.
  • C. Mladenova, “Robot problems over con…gurational manifold of vector-parameters and dual vector-parametes” J. Intelligent and Robotic systems 11 (1994) 117-133.
  • E. Ata, Y. Yayli, “Split Quaternions and Semi-Euclidean Projective Spaces” Caos Solitons Fractals 41 ( 2009), no.4, 1910-1915.
  • E. Ata, Y. Yayli, “Dual Quaternions and Dual Projective Spaces” Chaos Solitons Fractals 40 ( 2009), no.3, 1255-1263.
  • J. P. Ward, “Quaternions and Cayley Numbers” Kluwer Academic Publisher, 1997.
  • G. R. Veldkamp, “On the Use of Dual Numbers, Vectors and Matrices in instantaneous, spatial Kinematics”, Mechanism and Machine Theory, 1976 vol. 11, pp. 141-156.
  • A. F. Beardon, “The Geometry of Discrete Groups”, Springer-Verlag, New York, Berlin 1983.
  • H. H. U¼gurlu and H. Gündo¼gan, “The Cosine Hyperbolic and Sine Hyperbolic Rules for Dual Hyperbolic Spherical Trigonometry”, Mathematical and Computational Applications, Vol. 5, No.3, 185-190, 2000.
  • M. Kazaz, H. H. U¼gurlu, A. Özdemir, “The Cosine Rule II for a Spherical Triangle on the Dual Unit Sphere S2”, Math. Comput. Appl. 10(2005), no.3, 313-320.
  • A. Özdemir, M. Kazaz, “Hyperbolic Sine and Cosine Rules for Geodesic Triangles on The Hyperbolic Unit Sphere H2”, Mathematical and Computational Applications, Vol. 10, No.2, 209, 2005.
  • ”, Mathematical and Computational Applications, Vol. 10, No.2, H. H. U¼gurlu, A. Çalı¸skan, “The Study Mapping for Directed Space-like and Time-like lines in Minkowski 3-Space R1”, Mathematical and Computational Applications, Vol. 1, No. 2 pp.142-148,1996.
  • John G. Ratcliğe, “ Foundation of hyperbolic Manifolds (Graduate Text in Mathematics)” Sipringer-Verlag Newyork, Berlin 1991
  • L. Kula and Y. Yayli, “ Dual Split Quaternions and Screw Motions in Minkowski 3-Space” Iranian Journal of Sciences & Technology, Transaction A. Vol. 30, no. 3, 245-258. Address : Ankara University, Science Faculty, Mathematics Department, Tando¼gan, Ankara
Year 2015, Volume: 64 Issue: 2, 35 - 45, 01.08.2015
https://doi.org/10.1501/Commua1_0000000731

Abstract

References

  • S. Altmann, “Rotations, Quaternions, and Double Groups”. Clarendon Press, Oxford 1972.
  • R. Ablamowicz and G. Sobczyky, “Lectures on Cliğord (Geometric) Algebras and Applica- tions” Birkhäuser, Boston 2004.
  • C. Mladenova, “Robot problems over con…gurational manifold of vector-parameters and dual vector-parametes” J. Intelligent and Robotic systems 11 (1994) 117-133.
  • E. Ata, Y. Yayli, “Split Quaternions and Semi-Euclidean Projective Spaces” Caos Solitons Fractals 41 ( 2009), no.4, 1910-1915.
  • E. Ata, Y. Yayli, “Dual Quaternions and Dual Projective Spaces” Chaos Solitons Fractals 40 ( 2009), no.3, 1255-1263.
  • J. P. Ward, “Quaternions and Cayley Numbers” Kluwer Academic Publisher, 1997.
  • G. R. Veldkamp, “On the Use of Dual Numbers, Vectors and Matrices in instantaneous, spatial Kinematics”, Mechanism and Machine Theory, 1976 vol. 11, pp. 141-156.
  • A. F. Beardon, “The Geometry of Discrete Groups”, Springer-Verlag, New York, Berlin 1983.
  • H. H. U¼gurlu and H. Gündo¼gan, “The Cosine Hyperbolic and Sine Hyperbolic Rules for Dual Hyperbolic Spherical Trigonometry”, Mathematical and Computational Applications, Vol. 5, No.3, 185-190, 2000.
  • M. Kazaz, H. H. U¼gurlu, A. Özdemir, “The Cosine Rule II for a Spherical Triangle on the Dual Unit Sphere S2”, Math. Comput. Appl. 10(2005), no.3, 313-320.
  • A. Özdemir, M. Kazaz, “Hyperbolic Sine and Cosine Rules for Geodesic Triangles on The Hyperbolic Unit Sphere H2”, Mathematical and Computational Applications, Vol. 10, No.2, 209, 2005.
  • ”, Mathematical and Computational Applications, Vol. 10, No.2, H. H. U¼gurlu, A. Çalı¸skan, “The Study Mapping for Directed Space-like and Time-like lines in Minkowski 3-Space R1”, Mathematical and Computational Applications, Vol. 1, No. 2 pp.142-148,1996.
  • John G. Ratcliğe, “ Foundation of hyperbolic Manifolds (Graduate Text in Mathematics)” Sipringer-Verlag Newyork, Berlin 1991
  • L. Kula and Y. Yayli, “ Dual Split Quaternions and Screw Motions in Minkowski 3-Space” Iranian Journal of Sciences & Technology, Transaction A. Vol. 30, no. 3, 245-258. Address : Ankara University, Science Faculty, Mathematics Department, Tando¼gan, Ankara
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hesna Kabadayı This is me

Publication Date August 1, 2015
Published in Issue Year 2015 Volume: 64 Issue: 2

Cite

APA Kabadayı, H. (2015). Unit dual split quaternions and arcs of dual hyperbolic spherical triangles. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 64(2), 35-45. https://doi.org/10.1501/Commua1_0000000731
AMA Kabadayı H. Unit dual split quaternions and arcs of dual hyperbolic spherical triangles. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2015;64(2):35-45. doi:10.1501/Commua1_0000000731
Chicago Kabadayı, Hesna. “Unit Dual Split Quaternions and Arcs of Dual Hyperbolic Spherical Triangles”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 64, no. 2 (August 2015): 35-45. https://doi.org/10.1501/Commua1_0000000731.
EndNote Kabadayı H (August 1, 2015) Unit dual split quaternions and arcs of dual hyperbolic spherical triangles. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 64 2 35–45.
IEEE H. Kabadayı, “Unit dual split quaternions and arcs of dual hyperbolic spherical triangles”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 64, no. 2, pp. 35–45, 2015, doi: 10.1501/Commua1_0000000731.
ISNAD Kabadayı, Hesna. “Unit Dual Split Quaternions and Arcs of Dual Hyperbolic Spherical Triangles”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 64/2 (August 2015), 35-45. https://doi.org/10.1501/Commua1_0000000731.
JAMA Kabadayı H. Unit dual split quaternions and arcs of dual hyperbolic spherical triangles. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2015;64:35–45.
MLA Kabadayı, Hesna. “Unit Dual Split Quaternions and Arcs of Dual Hyperbolic Spherical Triangles”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 64, no. 2, 2015, pp. 35-45, doi:10.1501/Commua1_0000000731.
Vancouver Kabadayı H. Unit dual split quaternions and arcs of dual hyperbolic spherical triangles. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2015;64(2):35-4.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.