BibTex RIS Cite

WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS

Year 2016, Volume: 65 Issue: 1, 87 - 104, 01.02.2016
https://doi.org/10.1501/Commua1_0000000746

Abstract

In this paper, we are dealing with q-Sz·sz-Mirakyan-DurrmeyerStancu operators. Firstly, we establish moments of these operators and estimate convergence results. We discuss a Voronovska ja type result for the
operators. We shall give the weighted approximation properties of these operators. Furthermore, we study the weighted statistical convergence for the
operators.

References

  • Agratini O., Do¼gru O., Weighted statistical approximation by q-Szász type operators that preserve some test functions, Taiwanese J. Math., 2010, 14, 4, 1283-1296
  • Aral A., Gupta V., The q-derivative and applications to q-Szász-Mirakyan operators, Calcolo , 43, 151-170
  • Aral A., A generalization of Szász-Mirakyan operators based on q-integers, Math. Comput. Model. 2008, 47, 1052-1062
  • Derriennic M. M., Modi…ed Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 2005, 76, 269-290
  • De Sole A., Kac V., On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2005, 16, 11-29
  • Do¼gru O., On statistical approximation properties of Stancu type bivariate generalization of q-Balazs-Szabados operators. In Proceedings of the International Conference on Numerical Analysis and Approximation Theory, University of Babes-Bolyai, Cluj-Napoca (5–8 July ) Finta Z., Gupta V., Approximation by q-Durrmeyer operators, J. Appl. Math. Comput., , 29, 401-415
  • Gadjiev A. D., The convergence problem for a sequence of positive linear operators on un- bounded sets, and theorems analogous to that of P. P. Korovkin, Soviet Math. Dokl., 1974, (5), 1433–1436
  • Gadjiev A.D., Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 2002, 32, 1, 129-138
  • Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., , 197, 172-178
  • Gupta V., On q-Phillips operators, Georgian Math. J., submitted Gupta V., A note on modi…ed Szász operators, Bull. Inst. Math. Acad. Sinica, 1993, 21(3), 278
  • Gupta V., Deo N., Zeng X., Simultaneous approximation for Szász-Mirakian-Stancu- Durrmeyer operators, Anal. Theory Appl., 2013, 29 (1), 86-96
  • Gupta V., Aral A., Özhavzali M., Approximation by q-Szász-Mirakyan-Baskakov operators, Fasciculi Mathematici, 2012, 48, 35-48
  • Gupta V., Heping W., The rate of convergence of q-Durrmeyer operators for 0 < q < 1, Math. Methods Appl. Sci., 2008, 31, 1946-1955
  • Gupta V., Srivastava G. S., On the rate of convergence of Phillips operators for functions of bounded variation, Annal. Soc. Math. Polon. Comment. Math., 1996, 36, 123-130
  • Gupta V., Karslı H., Some approximation properties by q-Szász-Mirakyan-Baskakov-Stancu operators, Lobachevskii Journal of Mathematics, 2012, 33(2), 175-182
  • Jackson F. H., On q-de…nite integrals, Quart. J. Pure and Applied Math., 41, 1910, 193-203
  • Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002
  • Mahmudov N. I., Approximation by the q-Szász-Mirakyan operators, Abstr. Appl. Anal., , Article ID 754217, doi:10.1155/2012/754217
  • Mahmudov N. I., On q-parametric Szász-Mirakyan operators, Mediterranean J. Math., 2010, (3), 297-311
  • Mahmudov N. I., Kağao¼glu H., On q-Szász-Durrmeyer operators, Cent. Eur. J. Math., 2010, , 399-409
  • Mahmudov N. I., Gupta V., Kağao¼glu H., On certain q-Phillips operators, Rocky Mountain J. Math., 2012, 42, 4, 1291-1310
  • May C. P., On Phillips operator, J. Approx. Theory, 1977, 20, 315-332
  • Örkcü M., Do¼gru O., Weighted statistical approximation by Kantorovich type q-Szász- Mirakjan operators, Appl. Math. Comput., 2011, 217, 7913-7919
  • Örkcü M., Do¼gru O., Statistical approximation of a kind of Kantorovich type q-Szász- Mirakjan operators, Nonlinear Anal-Theor., 2012, 75, 2874-2882
  • Phillips G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 518
  • Phillips R. S., An inversion formula for Laplace transforms and semi-groups of linear oper- ators, Annals of Mathematics. Second Series, 1954, 59, 325–356
  • Prasad G., Agrawal P. N., Kasana H. S., Approximation of functions on [0; 1) by a new sequence of modi…ed Szász operators, Math. Forum, 1983, 6(2), 1-11.
  • Current address : Department of Mathematics, Gazi University, Ankara, Turkey; E-mail address : gurhanicoz@gazi.edu.tr. Current address : Department of Mathematics, University of Central Florida, Orlando, FL, USA; E-mail address : Ram.Mohapatra@ucf.edu.
Year 2016, Volume: 65 Issue: 1, 87 - 104, 01.02.2016
https://doi.org/10.1501/Commua1_0000000746

Abstract

References

  • Agratini O., Do¼gru O., Weighted statistical approximation by q-Szász type operators that preserve some test functions, Taiwanese J. Math., 2010, 14, 4, 1283-1296
  • Aral A., Gupta V., The q-derivative and applications to q-Szász-Mirakyan operators, Calcolo , 43, 151-170
  • Aral A., A generalization of Szász-Mirakyan operators based on q-integers, Math. Comput. Model. 2008, 47, 1052-1062
  • Derriennic M. M., Modi…ed Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 2005, 76, 269-290
  • De Sole A., Kac V., On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2005, 16, 11-29
  • Do¼gru O., On statistical approximation properties of Stancu type bivariate generalization of q-Balazs-Szabados operators. In Proceedings of the International Conference on Numerical Analysis and Approximation Theory, University of Babes-Bolyai, Cluj-Napoca (5–8 July ) Finta Z., Gupta V., Approximation by q-Durrmeyer operators, J. Appl. Math. Comput., , 29, 401-415
  • Gadjiev A. D., The convergence problem for a sequence of positive linear operators on un- bounded sets, and theorems analogous to that of P. P. Korovkin, Soviet Math. Dokl., 1974, (5), 1433–1436
  • Gadjiev A.D., Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 2002, 32, 1, 129-138
  • Gupta V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., , 197, 172-178
  • Gupta V., On q-Phillips operators, Georgian Math. J., submitted Gupta V., A note on modi…ed Szász operators, Bull. Inst. Math. Acad. Sinica, 1993, 21(3), 278
  • Gupta V., Deo N., Zeng X., Simultaneous approximation for Szász-Mirakian-Stancu- Durrmeyer operators, Anal. Theory Appl., 2013, 29 (1), 86-96
  • Gupta V., Aral A., Özhavzali M., Approximation by q-Szász-Mirakyan-Baskakov operators, Fasciculi Mathematici, 2012, 48, 35-48
  • Gupta V., Heping W., The rate of convergence of q-Durrmeyer operators for 0 < q < 1, Math. Methods Appl. Sci., 2008, 31, 1946-1955
  • Gupta V., Srivastava G. S., On the rate of convergence of Phillips operators for functions of bounded variation, Annal. Soc. Math. Polon. Comment. Math., 1996, 36, 123-130
  • Gupta V., Karslı H., Some approximation properties by q-Szász-Mirakyan-Baskakov-Stancu operators, Lobachevskii Journal of Mathematics, 2012, 33(2), 175-182
  • Jackson F. H., On q-de…nite integrals, Quart. J. Pure and Applied Math., 41, 1910, 193-203
  • Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002
  • Mahmudov N. I., Approximation by the q-Szász-Mirakyan operators, Abstr. Appl. Anal., , Article ID 754217, doi:10.1155/2012/754217
  • Mahmudov N. I., On q-parametric Szász-Mirakyan operators, Mediterranean J. Math., 2010, (3), 297-311
  • Mahmudov N. I., Kağao¼glu H., On q-Szász-Durrmeyer operators, Cent. Eur. J. Math., 2010, , 399-409
  • Mahmudov N. I., Gupta V., Kağao¼glu H., On certain q-Phillips operators, Rocky Mountain J. Math., 2012, 42, 4, 1291-1310
  • May C. P., On Phillips operator, J. Approx. Theory, 1977, 20, 315-332
  • Örkcü M., Do¼gru O., Weighted statistical approximation by Kantorovich type q-Szász- Mirakjan operators, Appl. Math. Comput., 2011, 217, 7913-7919
  • Örkcü M., Do¼gru O., Statistical approximation of a kind of Kantorovich type q-Szász- Mirakjan operators, Nonlinear Anal-Theor., 2012, 75, 2874-2882
  • Phillips G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 518
  • Phillips R. S., An inversion formula for Laplace transforms and semi-groups of linear oper- ators, Annals of Mathematics. Second Series, 1954, 59, 325–356
  • Prasad G., Agrawal P. N., Kasana H. S., Approximation of functions on [0; 1) by a new sequence of modi…ed Szász operators, Math. Forum, 1983, 6(2), 1-11.
  • Current address : Department of Mathematics, Gazi University, Ankara, Turkey; E-mail address : gurhanicoz@gazi.edu.tr. Current address : Department of Mathematics, University of Central Florida, Orlando, FL, USA; E-mail address : Ram.Mohapatra@ucf.edu.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Gürhan Içöz This is me

N. Mohapatra R. This is me

Publication Date February 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 1

Cite

APA Içöz, G., & Mohapatra R., N. (2016). WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 87-104. https://doi.org/10.1501/Commua1_0000000746
AMA Içöz G, Mohapatra R. N. WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):87-104. doi:10.1501/Commua1_0000000746
Chicago Içöz, Gürhan, and N. Mohapatra R. “WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 87-104. https://doi.org/10.1501/Commua1_0000000746.
EndNote Içöz G, Mohapatra R. N (February 1, 2016) WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 87–104.
IEEE G. Içöz and N. Mohapatra R., “WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 87–104, 2016, doi: 10.1501/Commua1_0000000746.
ISNAD Içöz, Gürhan - Mohapatra R., N. “WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 87-104. https://doi.org/10.1501/Commua1_0000000746.
JAMA Içöz G, Mohapatra R. N. WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:87–104.
MLA Içöz, Gürhan and N. Mohapatra R. “WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 87-104, doi:10.1501/Commua1_0000000746.
Vancouver Içöz G, Mohapatra R. N. WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OFq-SZÁSZ-DURRMEYER OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):87-104.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.