BibTex RIS Cite

ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

Year 2016, Volume: 65 Issue: 1, 171 - 186, 01.02.2016
https://doi.org/10.1501/Commua1_0000000752

Abstract

In this paper, we study CR submanifolds of an S manifold endowed with a semi-symmetric non-metric connection. We give an example,investigating integrabilities of horizontal and vertical distributions of CR submanifolds endowed with a semi-symmetric non-metric connection. We alsoconsider parallel horizontal distributions of CR submanifolds

References

  • Agashe, N. S. and Cha*e, M. R., A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 23 (1992), 399âe“409.
  • Aktan, N., On non-existence of lightlike hypersurfaces of inde…nite S-space form, Interna- tional Journal of Mathematics and Analysis, 5-8 (1-12), (2007), 187-202.
  • Alghanemi, A., CR submanifolds of a S manifold, Turkish J. Math. 32 (2008), 141-154.
  • Balkan, Y. S., Aktan, N., Özüsaglam, E., Cylcic-Parallel Ricci Tensor of Almost S- manifolds,, Konuralp Journal of Mathematics, 1(1), (2013), 1-7.
  • Bejancu, A., CR submanifolds of a Kaehler manifold I, Proc. Am. Math. Soc. 69 (1978), 142.
  • Bejancu, A., Geometry of CR-submanifolds, D. Reidel Pub. Co., (1986).
  • Bejancu, A., Papaghiuc, N., Semi-invariant submanifolds of a Sasakian manifold, Ann. Stiin. Univ. Al. I. Cuza. Iasi (serie nova), T. XXVII, Fasc. 1 (1981), 163-170.
  • Blair, D. E. Geometry of manifolds with structural group U (n) O(s), J. Diğer. Geom. 4 (1970), 155-167.
  • Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., A classi…cation of certain submani- folds of an S-manifold, Ann Polinici Mathematici 54 (2), (1991), 117-123.
  • Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., A classi…cation Totally fumblical submanifolds of an S-manifold, Soochow J. Math. 18(2), (1992), 211-221.
  • Goldberg, S. I., Yano, K., On normal globally framed manifolds, Tôhoku Math. J., 22 (1970), 370.
  • Gündüzalp, Y., Framed complex submersions, Konuralp Journal of Mathematics, 2(2), (2014), 9-21.
  • Gündüzalp, Y., Riemannian submersions from framed metric manifolds, International Elec- tronic Journal of Geometry, 6(1), (2013), 89-99.
  • Hayden, H. A., Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.
  • Fernandez, L. M., CR-products of S-manifold, Portugal Math. 47(2), (1990), 167-181.
  • Friedmann, A., Schouten, J. A., Uber die Geometric der halbsymmetrischen Ubertragung, Math. Z. 21 (1924), 211-223.
  • Kobayashi, M., CR-submanifolds of a Sasakian manifold, Tensor N.S. 35 (1981), 297-307.
  • Mihai, I., CR subvarietati ale unei f-varietati cu repere complementare, Stud. Cerc. Math., , NR 2 (1983), 127-136.
  • Ornea, L., subvarietati Cauchy-Riemann generice in S varietati, Stud. Cerc. Math., 36, NR (1984), 435-443.
  • Vanli, A., Sari, R., On semi invariant submanifolds of a generalized Kenmotsu manifold admitting a semi-symmetric non metric connection, Pure and Applied Mathematics Journal. (1-2), (2015), 14-18.
  • ¸Sahin, B., Rıfat, G., Geodesic CR Lightlike Submanifolds, Beiträge zur Algebra and Geome- trie Contributions to Algebra and Geometry, 42(2), (2001), 583-594.
  • Yano K. On a structure de…ned by a tensor …eld f of type (1; 1) satisfying f3+ f = 0. Tensor N S 14, (1963), 99-109.
Year 2016, Volume: 65 Issue: 1, 171 - 186, 01.02.2016
https://doi.org/10.1501/Commua1_0000000752

Abstract

References

  • Agashe, N. S. and Cha*e, M. R., A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 23 (1992), 399âe“409.
  • Aktan, N., On non-existence of lightlike hypersurfaces of inde…nite S-space form, Interna- tional Journal of Mathematics and Analysis, 5-8 (1-12), (2007), 187-202.
  • Alghanemi, A., CR submanifolds of a S manifold, Turkish J. Math. 32 (2008), 141-154.
  • Balkan, Y. S., Aktan, N., Özüsaglam, E., Cylcic-Parallel Ricci Tensor of Almost S- manifolds,, Konuralp Journal of Mathematics, 1(1), (2013), 1-7.
  • Bejancu, A., CR submanifolds of a Kaehler manifold I, Proc. Am. Math. Soc. 69 (1978), 142.
  • Bejancu, A., Geometry of CR-submanifolds, D. Reidel Pub. Co., (1986).
  • Bejancu, A., Papaghiuc, N., Semi-invariant submanifolds of a Sasakian manifold, Ann. Stiin. Univ. Al. I. Cuza. Iasi (serie nova), T. XXVII, Fasc. 1 (1981), 163-170.
  • Blair, D. E. Geometry of manifolds with structural group U (n) O(s), J. Diğer. Geom. 4 (1970), 155-167.
  • Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., A classi…cation of certain submani- folds of an S-manifold, Ann Polinici Mathematici 54 (2), (1991), 117-123.
  • Cabrerizo, J. L., Fernandez, L. M., and Fernandez, M., A classi…cation Totally fumblical submanifolds of an S-manifold, Soochow J. Math. 18(2), (1992), 211-221.
  • Goldberg, S. I., Yano, K., On normal globally framed manifolds, Tôhoku Math. J., 22 (1970), 370.
  • Gündüzalp, Y., Framed complex submersions, Konuralp Journal of Mathematics, 2(2), (2014), 9-21.
  • Gündüzalp, Y., Riemannian submersions from framed metric manifolds, International Elec- tronic Journal of Geometry, 6(1), (2013), 89-99.
  • Hayden, H. A., Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.
  • Fernandez, L. M., CR-products of S-manifold, Portugal Math. 47(2), (1990), 167-181.
  • Friedmann, A., Schouten, J. A., Uber die Geometric der halbsymmetrischen Ubertragung, Math. Z. 21 (1924), 211-223.
  • Kobayashi, M., CR-submanifolds of a Sasakian manifold, Tensor N.S. 35 (1981), 297-307.
  • Mihai, I., CR subvarietati ale unei f-varietati cu repere complementare, Stud. Cerc. Math., , NR 2 (1983), 127-136.
  • Ornea, L., subvarietati Cauchy-Riemann generice in S varietati, Stud. Cerc. Math., 36, NR (1984), 435-443.
  • Vanli, A., Sari, R., On semi invariant submanifolds of a generalized Kenmotsu manifold admitting a semi-symmetric non metric connection, Pure and Applied Mathematics Journal. (1-2), (2015), 14-18.
  • ¸Sahin, B., Rıfat, G., Geodesic CR Lightlike Submanifolds, Beiträge zur Algebra and Geome- trie Contributions to Algebra and Geometry, 42(2), (2001), 583-594.
  • Yano K. On a structure de…ned by a tensor …eld f of type (1; 1) satisfying f3+ f = 0. Tensor N S 14, (1963), 99-109.
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Mehmet Akif Akyol This is me

Ramazan Sarı This is me

Publication Date February 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 1

Cite

APA Akyol, M. A., & Sarı, R. (2016). ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(1), 171-186. https://doi.org/10.1501/Commua1_0000000752
AMA Akyol MA, Sarı R. ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2016;65(1):171-186. doi:10.1501/Commua1_0000000752
Chicago Akyol, Mehmet Akif, and Ramazan Sarı. “ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 1 (February 2016): 171-86. https://doi.org/10.1501/Commua1_0000000752.
EndNote Akyol MA, Sarı R (February 1, 2016) ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 1 171–186.
IEEE M. A. Akyol and R. Sarı, “ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 1, pp. 171–186, 2016, doi: 10.1501/Commua1_0000000752.
ISNAD Akyol, Mehmet Akif - Sarı, Ramazan. “ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/1 (February 2016), 171-186. https://doi.org/10.1501/Commua1_0000000752.
JAMA Akyol MA, Sarı R. ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:171–186.
MLA Akyol, Mehmet Akif and Ramazan Sarı. “ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 1, 2016, pp. 171-86, doi:10.1501/Commua1_0000000752.
Vancouver Akyol MA, Sarı R. ON CR SUBMANIFOLDS OF A S MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(1):171-86.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.