J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990.
M. Baran, Separation properties, Indian J. Pure Appl. Math., 23 (1992), 333-341.
M. Baran, Stacks and …lters, Turkish J. of Math.-Do¼ga, 16 (1992), 95-108.
M. Baran, The notion of closedness in topological categories, Comment. Math. Univ. Caroli- nae, 34 (1993), 383-395.
M. Baran, T-ob jects in categories of …lter and local …lter convergence spaces, Turkish J. of Math.-Do¼ga, 20 (1996), 159-168.
M. Baran, Completely Regular Ob jects and Normal Ob jects in topological categories, Acta Math. Hungar., 80 (1998), no. 3, 211-224.
M. Baran, T3and T4-ob jects in topological categories, Indian J. Pure Appl. Math., 29 (1998), 59-69.
M. Baran, Closure operators in convergence spaces, Acta Math. Hungar., 87 (2000), 33-45.
M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures, 10 (2002), 403-415.
M. Baran, PreT2-ob jects in topological categories, Applied Categorical Structures, 17 (2009), 602, DOI 10.1007/s10485-008-9161-4.
M. Baran and H. Altındi¸s, To-Ob jects in Topological Categories, J. Univ. Kuwait (sci.), 22 (1995), 123-127.
M. Baran and H. Altındi¸s, T-ob jects in topological categories, Acta Math. Hungar., 71 (1996), no. 1-2, 41-48.
M. Baran and M. Kula, A note on separation and compactness in categories of convergence spaces, Applied General Topology, 4 (2003), no. 1, 1-13.
M. Baran, D. Tokat and M. Kula, Connectedness and separation in the category of closure spaces, Filomat, 24 (2010), 67-79.
H. L. Bentley, H. Herrlich, and E. Lowen-Colebunders, Convergence, J. Pure Appl. Algebra, (1990), no 1-2, 27-45.
D. Dikranjan and E. Giuli, Closure operators I, Topology Appl., 27 (1987), 129-143.
R. Friµc and D. Kent, On the natural completion functor for Cauchy spaces, Bull. Austral. Math. Soc., 18 (1978), 335-343.
R. Friµc and D. Kent, Completion functors for Cauchy spaces, Internat. J. Math. and Math. Sci. 2, 4 (1979), 589-604.
S. Gähler, W. Gähler, and G. Kneis, Completion of pseudotopological vector spaces, Math., Nachr., 75 (1976), 185-206.
P.T. Johnstone, Topos Theory, London Math. Soc. Monographs, No. 10, Academic Press, New York, 1977.
M. Katµetov, On continuity structures and spaces of mappings, Comm. Math. Univ. Car., 6 (1965), 257-278.
H. Keller, Die Limes-uniformisierbarkeit der Limesräume, Math. Ann., 176 (1968), 334-341.
D. C. Kent and G. D. Richardson, Cauchy Spaces with Regular Completions, Paci…c J. Math., (1984), 105-116.
D. C. Kent and G. D. Richardson, Cauchy Completion Categories, Canad. Math. Bull, 32 (1989), 78-83.
G. Kneis, On regular completion of pseudo-uniform spaces, Colloquia Math. Soc. János Bolyai, 23 (1978), 713-727.
H. J., Kowalsky, Limesräume und Komplettierung, Math. Nachr., 12 (1954), 301-340.
M. Kula, A Note on Cauchy Spaces, Acta Math. Hungar., 133 (2011), no. 1-2, 14-32, DOI:10.1007/s10474-011-0136-9.
M. Kula, Separation properties at p for the topological category of Cauchy Spaces, Acta Math. Hungar., 136 (2012), no. 1-2, 1-15, DOI: 10.1007/s10474-012-0238-z.
E. Lowen-Colebunders, On the regularity of the Kowalsky completion, Canad. J. Math., 36 (1984), 58-70.
E. Lowen-Colebunders, Function classes of Cauchy Continuous maps, M. Dekker, New York, Th. Marny, Rechts-Bikategoriestrukturen in topologischen Kategorien, Dissertation, Freie Universität Berlin, 1973.
M.V. Mielke, Separation axioms and geometric realizations, Indian J. Pure Appl. Math., 25 (1994), 711-722.
L. D. Nel, Initially structured categories and cartesian closedness, Canad. Journal of Math., XXVII (1975), 1361-1377.
G. Preuss, Theory of Topological Structures. An Approach to Topological Categories, D. Reidel Publ. Co., Dordrecht, 1988.
G. Preuss, Improvement of Cauchy spaces, Q&A in General Topology, 9 (1991), 159-166.
J. F. Ramaley and O. Wyler, Cauchy Spaces II: Regular Completions and Compacti…cations, Math. Ann., 187 (1970), 187-199.
N. Rath, Precauchy spaces, PH.D. Thesis, Washington State University, 1994.
N. Rath, Completion of a Cauchy space without the T-restriction on the space, Int. J. Math. Math. Sci., 3, 24 (2000), 163-172.
E. Reed, Completion of uniform convergence spaces, Math. Ann., 194 (1971), 83-108.
S. Weck-Schwarz, T0-ob jects and separated ob jects in topological categories, Quaestiones Math., 14 (1991), 315-325.
Current address : Department of Mathematics, Faculty of Science, Erciyes University, Kayseri Turkey. E-mail address : kulam@erciyes.edu.tr
Year 2017,
Volume: 66 Issue: 1, 29 - 42, 01.02.2017
J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990.
M. Baran, Separation properties, Indian J. Pure Appl. Math., 23 (1992), 333-341.
M. Baran, Stacks and …lters, Turkish J. of Math.-Do¼ga, 16 (1992), 95-108.
M. Baran, The notion of closedness in topological categories, Comment. Math. Univ. Caroli- nae, 34 (1993), 383-395.
M. Baran, T-ob jects in categories of …lter and local …lter convergence spaces, Turkish J. of Math.-Do¼ga, 20 (1996), 159-168.
M. Baran, Completely Regular Ob jects and Normal Ob jects in topological categories, Acta Math. Hungar., 80 (1998), no. 3, 211-224.
M. Baran, T3and T4-ob jects in topological categories, Indian J. Pure Appl. Math., 29 (1998), 59-69.
M. Baran, Closure operators in convergence spaces, Acta Math. Hungar., 87 (2000), 33-45.
M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures, 10 (2002), 403-415.
M. Baran, PreT2-ob jects in topological categories, Applied Categorical Structures, 17 (2009), 602, DOI 10.1007/s10485-008-9161-4.
M. Baran and H. Altındi¸s, To-Ob jects in Topological Categories, J. Univ. Kuwait (sci.), 22 (1995), 123-127.
M. Baran and H. Altındi¸s, T-ob jects in topological categories, Acta Math. Hungar., 71 (1996), no. 1-2, 41-48.
M. Baran and M. Kula, A note on separation and compactness in categories of convergence spaces, Applied General Topology, 4 (2003), no. 1, 1-13.
M. Baran, D. Tokat and M. Kula, Connectedness and separation in the category of closure spaces, Filomat, 24 (2010), 67-79.
H. L. Bentley, H. Herrlich, and E. Lowen-Colebunders, Convergence, J. Pure Appl. Algebra, (1990), no 1-2, 27-45.
D. Dikranjan and E. Giuli, Closure operators I, Topology Appl., 27 (1987), 129-143.
R. Friµc and D. Kent, On the natural completion functor for Cauchy spaces, Bull. Austral. Math. Soc., 18 (1978), 335-343.
R. Friµc and D. Kent, Completion functors for Cauchy spaces, Internat. J. Math. and Math. Sci. 2, 4 (1979), 589-604.
S. Gähler, W. Gähler, and G. Kneis, Completion of pseudotopological vector spaces, Math., Nachr., 75 (1976), 185-206.
P.T. Johnstone, Topos Theory, London Math. Soc. Monographs, No. 10, Academic Press, New York, 1977.
M. Katµetov, On continuity structures and spaces of mappings, Comm. Math. Univ. Car., 6 (1965), 257-278.
H. Keller, Die Limes-uniformisierbarkeit der Limesräume, Math. Ann., 176 (1968), 334-341.
D. C. Kent and G. D. Richardson, Cauchy Spaces with Regular Completions, Paci…c J. Math., (1984), 105-116.
D. C. Kent and G. D. Richardson, Cauchy Completion Categories, Canad. Math. Bull, 32 (1989), 78-83.
G. Kneis, On regular completion of pseudo-uniform spaces, Colloquia Math. Soc. János Bolyai, 23 (1978), 713-727.
H. J., Kowalsky, Limesräume und Komplettierung, Math. Nachr., 12 (1954), 301-340.
M. Kula, A Note on Cauchy Spaces, Acta Math. Hungar., 133 (2011), no. 1-2, 14-32, DOI:10.1007/s10474-011-0136-9.
M. Kula, Separation properties at p for the topological category of Cauchy Spaces, Acta Math. Hungar., 136 (2012), no. 1-2, 1-15, DOI: 10.1007/s10474-012-0238-z.
E. Lowen-Colebunders, On the regularity of the Kowalsky completion, Canad. J. Math., 36 (1984), 58-70.
E. Lowen-Colebunders, Function classes of Cauchy Continuous maps, M. Dekker, New York, Th. Marny, Rechts-Bikategoriestrukturen in topologischen Kategorien, Dissertation, Freie Universität Berlin, 1973.
M.V. Mielke, Separation axioms and geometric realizations, Indian J. Pure Appl. Math., 25 (1994), 711-722.
L. D. Nel, Initially structured categories and cartesian closedness, Canad. Journal of Math., XXVII (1975), 1361-1377.
G. Preuss, Theory of Topological Structures. An Approach to Topological Categories, D. Reidel Publ. Co., Dordrecht, 1988.
G. Preuss, Improvement of Cauchy spaces, Q&A in General Topology, 9 (1991), 159-166.
J. F. Ramaley and O. Wyler, Cauchy Spaces II: Regular Completions and Compacti…cations, Math. Ann., 187 (1970), 187-199.
N. Rath, Precauchy spaces, PH.D. Thesis, Washington State University, 1994.
N. Rath, Completion of a Cauchy space without the T-restriction on the space, Int. J. Math. Math. Sci., 3, 24 (2000), 163-172.
E. Reed, Completion of uniform convergence spaces, Math. Ann., 194 (1971), 83-108.
S. Weck-Schwarz, T0-ob jects and separated ob jects in topological categories, Quaestiones Math., 14 (1991), 315-325.
Current address : Department of Mathematics, Faculty of Science, Erciyes University, Kayseri Turkey. E-mail address : kulam@erciyes.edu.tr
Kula, M. (2017). T3 AND T4-objects in the topological category of cauchy spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 29-42. https://doi.org/10.1501/Commua1_0000000772
AMA
Kula M. T3 AND T4-objects in the topological category of cauchy spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):29-42. doi:10.1501/Commua1_0000000772
Chicago
Kula, Muammer. “T3 AND T4-Objects in the Topological Category of Cauchy Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 29-42. https://doi.org/10.1501/Commua1_0000000772.
EndNote
Kula M (February 1, 2017) T3 AND T4-objects in the topological category of cauchy spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 29–42.
IEEE
M. Kula, “T3 AND T4-objects in the topological category of cauchy spaces”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 29–42, 2017, doi: 10.1501/Commua1_0000000772.
ISNAD
Kula, Muammer. “T3 AND T4-Objects in the Topological Category of Cauchy Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 29-42. https://doi.org/10.1501/Commua1_0000000772.
JAMA
Kula M. T3 AND T4-objects in the topological category of cauchy spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:29–42.
MLA
Kula, Muammer. “T3 AND T4-Objects in the Topological Category of Cauchy Spaces”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 29-42, doi:10.1501/Commua1_0000000772.
Vancouver
Kula M. T3 AND T4-objects in the topological category of cauchy spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):29-42.