Dhara B. and Ali S., On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. (2013); 86(1 ); 65
Herstein I. N., Rings with involution, The University of Chicago Press, Chicago, 1976.
Bresar M., On the distance of the composition of two derivations to the generalized deriva- Daif M. N., When a multiplicative derivation is additive, Int. J. Math.&Math. Sci. (1991), (3); 615
Daif M. N. and El-Sayiad M. S. T., Multiplicative generalized derivations which are additive, East-west J. Math. (1997); 9(1); 31
El Sayiad M. S. T., Daif M. N. and Filippis V.D., Multiplicativity of left centralizers forcing additivity, Bol. Soc. Paran. Mat. (2014); 32(1); 61
Ashraf M. and Rehman N., On derivations and commutativity in prime rings, East-west J. Math.(2001); 3(1); 87
Ashraf M., Ali A. and Ali S., Some commutativity theorems for rings with generalized deriva- tions, Southeast Asian Bull. Math. (2007); 31; 415
Daif M. N. and Bell H. E., Remarks on derivations on semiprime rings, Int.J.Math.&Math. Sci. (1992); 15(1); 205
Quadri M. A., Khan M. S. and Rehman N., Generalized derivations and commutativity of prime rings, Indian J.Pure Appl.Math. (2003); 34(9); 1393
Dhara B., Remarks on generalized derivations in prime and semiprime rings, Int. J. Math.&Math. Sci. (2010); 2010; Article ID 646587, 6 pages.
Ali A., Filippis V. D. and Shujat F., On one sided ideals of a semiprime ring with generalized derivations, Aequat. Math. (2013); 85(3); 529
Posner E. C., Derivations in prime rings, Proc. Amer. Math. Soc. (1957); 8; 1093
Ali A., Dhara B., Khan S. and Ali F., Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. Stat. (2015); 44(6); 1293
Current address : Didem K. Camcı: Çanakkale Onsekiz Mart University Dept. Math. Çanakkale TURKEY E-mail address : didemk@comu.edu.tr Current address : Ne¸set Aydın: Çanakkale Onsekiz Mart University Dept. Math. Çanakkale - TURKEY E-mail address : neseta@comu.edu.tr
Year 2017,
Volume: 66 Issue: 1, 153 - 164, 01.02.2017
Dhara B. and Ali S., On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. (2013); 86(1 ); 65
Herstein I. N., Rings with involution, The University of Chicago Press, Chicago, 1976.
Bresar M., On the distance of the composition of two derivations to the generalized deriva- Daif M. N., When a multiplicative derivation is additive, Int. J. Math.&Math. Sci. (1991), (3); 615
Daif M. N. and El-Sayiad M. S. T., Multiplicative generalized derivations which are additive, East-west J. Math. (1997); 9(1); 31
El Sayiad M. S. T., Daif M. N. and Filippis V.D., Multiplicativity of left centralizers forcing additivity, Bol. Soc. Paran. Mat. (2014); 32(1); 61
Ashraf M. and Rehman N., On derivations and commutativity in prime rings, East-west J. Math.(2001); 3(1); 87
Ashraf M., Ali A. and Ali S., Some commutativity theorems for rings with generalized deriva- tions, Southeast Asian Bull. Math. (2007); 31; 415
Daif M. N. and Bell H. E., Remarks on derivations on semiprime rings, Int.J.Math.&Math. Sci. (1992); 15(1); 205
Quadri M. A., Khan M. S. and Rehman N., Generalized derivations and commutativity of prime rings, Indian J.Pure Appl.Math. (2003); 34(9); 1393
Dhara B., Remarks on generalized derivations in prime and semiprime rings, Int. J. Math.&Math. Sci. (2010); 2010; Article ID 646587, 6 pages.
Ali A., Filippis V. D. and Shujat F., On one sided ideals of a semiprime ring with generalized derivations, Aequat. Math. (2013); 85(3); 529
Posner E. C., Derivations in prime rings, Proc. Amer. Math. Soc. (1957); 8; 1093
Ali A., Dhara B., Khan S. and Ali F., Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. Stat. (2015); 44(6); 1293
Current address : Didem K. Camcı: Çanakkale Onsekiz Mart University Dept. Math. Çanakkale TURKEY E-mail address : didemk@comu.edu.tr Current address : Ne¸set Aydın: Çanakkale Onsekiz Mart University Dept. Math. Çanakkale - TURKEY E-mail address : neseta@comu.edu.tr
Camcı, K. D., & Aydın, N. (2017). On multiplicative (generalized)-derivations in semiprime rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 153-164. https://doi.org/10.1501/Commua1_0000000784
AMA
Camcı KD, Aydın N. On multiplicative (generalized)-derivations in semiprime rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):153-164. doi:10.1501/Commua1_0000000784
Chicago
Camcı, K. Didem, and Neşet Aydın. “On Multiplicative (generalized)-Derivations in Semiprime Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 153-64. https://doi.org/10.1501/Commua1_0000000784.
EndNote
Camcı KD, Aydın N (February 1, 2017) On multiplicative (generalized)-derivations in semiprime rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 153–164.
IEEE
K. D. Camcı and N. Aydın, “On multiplicative (generalized)-derivations in semiprime rings”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 153–164, 2017, doi: 10.1501/Commua1_0000000784.
ISNAD
Camcı, K. Didem - Aydın, Neşet. “On Multiplicative (generalized)-Derivations in Semiprime Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 153-164. https://doi.org/10.1501/Commua1_0000000784.
JAMA
Camcı KD, Aydın N. On multiplicative (generalized)-derivations in semiprime rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:153–164.
MLA
Camcı, K. Didem and Neşet Aydın. “On Multiplicative (generalized)-Derivations in Semiprime Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 153-64, doi:10.1501/Commua1_0000000784.
Vancouver
Camcı KD, Aydın N. On multiplicative (generalized)-derivations in semiprime rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):153-64.