BibTex RIS Cite

Results on _α_centralizers of prime and semiprime rings with involution

Year 2017, Volume: 66 Issue: 1, 172 - 178, 01.02.2017
https://doi.org/10.1501/Commua1_0000000786

References

  • Alba¸s, E., On Ashraf, M. and Mozumder, M. R., On Jordan centralizers in semiprime rings with invo lution, Int. J. Contemp. Math. Sciences (2012), 7(23), 1103-1112.
  • Cortes, W. and Haetinger, C., On Lie ideals centralizers of 2 torsion free rings, Math. J. Okayama Univ. (2009), 51, 111-119.
  • Cortes, W. and Haetinger, C., On Jordan generalized higher derivations in rings, Turkish J. of Math. (2005), 29(1), 1-10.
  • Daif, M. N., Tammam El-Sayiad and Haetinger, H., On centralizers of semiprime rings, Aligarh Bull. Math. (2011), 30(1-2), 51-59.
  • Huang, S. and Haetinger, C., On matica (2012) , XLV(1), 29-34.
  • Shakir, A. and Haetinger, C., Jordan Paran. Mat. (2008), 26(1-2),71-80. centralizers of semiprime rings, Demonstratio Mathe
  • centralizers in rings and some applications, Bol. Soc. Shakir, A., Nadeem, A. Dar and Vukman, J., Jordan left centralizers of prime and semi prime with involutions, Beitr Algebra Geom. (2013), 54, 609-624.
  • Vukman, J., Centralizers on semiprime rings, Comment. Math. Univ. Carolin. (2001), 42 (2), 237-245.
Year 2017, Volume: 66 Issue: 1, 172 - 178, 01.02.2017
https://doi.org/10.1501/Commua1_0000000786

References

  • Alba¸s, E., On Ashraf, M. and Mozumder, M. R., On Jordan centralizers in semiprime rings with invo lution, Int. J. Contemp. Math. Sciences (2012), 7(23), 1103-1112.
  • Cortes, W. and Haetinger, C., On Lie ideals centralizers of 2 torsion free rings, Math. J. Okayama Univ. (2009), 51, 111-119.
  • Cortes, W. and Haetinger, C., On Jordan generalized higher derivations in rings, Turkish J. of Math. (2005), 29(1), 1-10.
  • Daif, M. N., Tammam El-Sayiad and Haetinger, H., On centralizers of semiprime rings, Aligarh Bull. Math. (2011), 30(1-2), 51-59.
  • Huang, S. and Haetinger, C., On matica (2012) , XLV(1), 29-34.
  • Shakir, A. and Haetinger, C., Jordan Paran. Mat. (2008), 26(1-2),71-80. centralizers of semiprime rings, Demonstratio Mathe
  • centralizers in rings and some applications, Bol. Soc. Shakir, A., Nadeem, A. Dar and Vukman, J., Jordan left centralizers of prime and semi prime with involutions, Beitr Algebra Geom. (2013), 54, 609-624.
  • Vukman, J., Centralizers on semiprime rings, Comment. Math. Univ. Carolin. (2001), 42 (2), 237-245.
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Emine Koç This is me

Öznur Gölbaşı This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 66 Issue: 1

Cite

APA Koç, E., & Gölbaşı, Ö. (2017). Results on _α_centralizers of prime and semiprime rings with involution. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 172-178. https://doi.org/10.1501/Commua1_0000000786
AMA Koç E, Gölbaşı Ö. Results on _α_centralizers of prime and semiprime rings with involution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2017;66(1):172-178. doi:10.1501/Commua1_0000000786
Chicago Koç, Emine, and Öznur Gölbaşı. “Results on _α_centralizers of Prime and Semiprime Rings With Involution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 1 (February 2017): 172-78. https://doi.org/10.1501/Commua1_0000000786.
EndNote Koç E, Gölbaşı Ö (February 1, 2017) Results on _α_centralizers of prime and semiprime rings with involution. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 172–178.
IEEE E. Koç and Ö. Gölbaşı, “Results on _α_centralizers of prime and semiprime rings with involution”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 1, pp. 172–178, 2017, doi: 10.1501/Commua1_0000000786.
ISNAD Koç, Emine - Gölbaşı, Öznur. “Results on _α_centralizers of Prime and Semiprime Rings With Involution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (February 2017), 172-178. https://doi.org/10.1501/Commua1_0000000786.
JAMA Koç E, Gölbaşı Ö. Results on _α_centralizers of prime and semiprime rings with involution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:172–178.
MLA Koç, Emine and Öznur Gölbaşı. “Results on _α_centralizers of Prime and Semiprime Rings With Involution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 1, 2017, pp. 172-8, doi:10.1501/Commua1_0000000786.
Vancouver Koç E, Gölbaşı Ö. Results on _α_centralizers of prime and semiprime rings with involution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):172-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.