BibTex RIS Kaynak Göster

Vector-valued Cesàro summable generalized Lorentz sequence space

Yıl 2017, Cilt: 66 Sayı: 1, 179 - 186, 01.02.2017
https://doi.org/10.1501/Commua1_0000000787

Öz

The main purpose of this paper is to introduce Cesàro summable generalized Lorentz sequence space C1[d(v; p)]. We study some topologicproperties of this space and obtain some inclusion relations

Kaynakça

  • Cui Y. A., Hudzik H., Some Geometric Properties Related to Fixed Point Theory in Cesàro Spaces, Collect. Math., 50 (3) (1999), 277-288.
  • Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge Univ. Press, 1967.
  • Kato M., On Lorentz Spaces lp;qfEg, Hiroshima Math. J., 6 (1976), 73-93
  • Kızmaz H., On Certain Sequence Spaces, Canad. Math. Bull., Vol. 24 (2), 1981.
  • Lee P. Y., Cesàro Sequence Space, Math. Chronicle, 13 (1984),29-45.
  • Lorentz G. G., Some New Functional Spaces, Ann. Math., 51 (1950), 37-55.
  • Lorentz G. G., On the Theory of Spaces Maddox I. J., Elements of Functional Analysis, Cambridge Univ. Press, 1970.
  • Miyazaki K., (p; q) Nuclear and (p; q) Integral Operators, Hiroshima Math. J., 4(1974), , Pasi…c J. Math., 1 (1951), 411-429. 132.
  • Nawrocki M., Ortynski A., The Mackey Topology and Complemented Subspaces of Lorentz Sequence Spaces d(w; p) for 0 < p < 1, Trans. Amer. Math. Soc., 287 (1985).
  • Petrot N., Suantai S., On Uniform Kadec-Klee Properties and Rodundity in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 2 (2004), 91-97.
  • Popa N., Basic Sequences and Subspaces in Lorentz Sequence Spaces Without Local Convex- ity, Trans. Amer. Math. Soc., 263 (1981), 431-456.
  • Sanhan W., Suantai S., On k nearly Uniform Convex Properties in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 57 (2003), 3599-3607.
  • Shiue J. S., On the Cesàro Sequence Spaces, Tamkang J. Math., 1 (1970), 19-25.
Yıl 2017, Cilt: 66 Sayı: 1, 179 - 186, 01.02.2017
https://doi.org/10.1501/Commua1_0000000787

Öz

Kaynakça

  • Cui Y. A., Hudzik H., Some Geometric Properties Related to Fixed Point Theory in Cesàro Spaces, Collect. Math., 50 (3) (1999), 277-288.
  • Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge Univ. Press, 1967.
  • Kato M., On Lorentz Spaces lp;qfEg, Hiroshima Math. J., 6 (1976), 73-93
  • Kızmaz H., On Certain Sequence Spaces, Canad. Math. Bull., Vol. 24 (2), 1981.
  • Lee P. Y., Cesàro Sequence Space, Math. Chronicle, 13 (1984),29-45.
  • Lorentz G. G., Some New Functional Spaces, Ann. Math., 51 (1950), 37-55.
  • Lorentz G. G., On the Theory of Spaces Maddox I. J., Elements of Functional Analysis, Cambridge Univ. Press, 1970.
  • Miyazaki K., (p; q) Nuclear and (p; q) Integral Operators, Hiroshima Math. J., 4(1974), , Pasi…c J. Math., 1 (1951), 411-429. 132.
  • Nawrocki M., Ortynski A., The Mackey Topology and Complemented Subspaces of Lorentz Sequence Spaces d(w; p) for 0 < p < 1, Trans. Amer. Math. Soc., 287 (1985).
  • Petrot N., Suantai S., On Uniform Kadec-Klee Properties and Rodundity in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 2 (2004), 91-97.
  • Popa N., Basic Sequences and Subspaces in Lorentz Sequence Spaces Without Local Convex- ity, Trans. Amer. Math. Soc., 263 (1981), 431-456.
  • Sanhan W., Suantai S., On k nearly Uniform Convex Properties in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 57 (2003), 3599-3607.
  • Shiue J. S., On the Cesàro Sequence Spaces, Tamkang J. Math., 1 (1970), 19-25.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Oğuz Oğur Bu kişi benim

Birsen Sağır Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 66 Sayı: 1

Kaynak Göster

APA Oğur, O., & Sağır, B. (2017). Vector-valued Cesàro summable generalized Lorentz sequence space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 179-186. https://doi.org/10.1501/Commua1_0000000787
AMA Oğur O, Sağır B. Vector-valued Cesàro summable generalized Lorentz sequence space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Şubat 2017;66(1):179-186. doi:10.1501/Commua1_0000000787
Chicago Oğur, Oğuz, ve Birsen Sağır. “Vector-Valued Cesàro Summable Generalized Lorentz Sequence Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, sy. 1 (Şubat 2017): 179-86. https://doi.org/10.1501/Commua1_0000000787.
EndNote Oğur O, Sağır B (01 Şubat 2017) Vector-valued Cesàro summable generalized Lorentz sequence space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 179–186.
IEEE O. Oğur ve B. Sağır, “Vector-valued Cesàro summable generalized Lorentz sequence space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 66, sy. 1, ss. 179–186, 2017, doi: 10.1501/Commua1_0000000787.
ISNAD Oğur, Oğuz - Sağır, Birsen. “Vector-Valued Cesàro Summable Generalized Lorentz Sequence Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (Şubat 2017), 179-186. https://doi.org/10.1501/Commua1_0000000787.
JAMA Oğur O, Sağır B. Vector-valued Cesàro summable generalized Lorentz sequence space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:179–186.
MLA Oğur, Oğuz ve Birsen Sağır. “Vector-Valued Cesàro Summable Generalized Lorentz Sequence Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 66, sy. 1, 2017, ss. 179-86, doi:10.1501/Commua1_0000000787.
Vancouver Oğur O, Sağır B. Vector-valued Cesàro summable generalized Lorentz sequence space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):179-86.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.