BibTex RIS Cite

DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM

Year 2018, Volume: 67 Issue: 1, 168 - 178, 01.02.2018
https://doi.org/10.1501/Commua1_0000000840

Abstract

This article presents optimal fractional control. This control is based on the property of the invariance of a fractional order differential equation. The problem formulation of the used control is expressed by diffusivere presentation. The fractional control problem is described in a minimization form, where the global optimum represents the diffusive realization of the controller. To determine the optimal fractional diffusive control, an adaptive partitioning algorithm is used. As an application, we have chosen the control of a DC motor with uncertain parameters

References

  • I. S. Jesus, J. A. T. Machado, “Fractional control of heat diğusion systems”. Nonlinear Dynamics, 54 (3), 263–282, 2008.
  • D. Boudjehem, B. Boudjehem, “A fractional model for robust fractional order Smith predic- tor”. Nonlinear Dynamics, 73 (3), 1557–1563, 2013.
  • B. Boudjehem, D. Boudjehem, “Fractional order controller design for desired response”. Pro- ceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 227 (12), 243–251, 2013.
  • G. Montseny. “Simple Approach to Approximation and Dynamical Realization of Pseudo- diğerential Time Operators such as Fractional ones”, IEEE Transactions on Circuits and Systems II, 51 (11), 613–618.
  • G. Montseny, Diğ usive representation of pseudo-diğ erential time-operators. LAAS, 1998.
  • G. Montseny, “Diğusive wave-absorbing control: Example of the boundary stabilization of a thin *exible beam”. Journal of Vibration and Control, 18 (11), 1708–1721, 2012.
  • L. Laudebat, P. Bidan, G. Montseny, “Modeling and Optimal Identi…cation of Pseudodif- ferential Electrical Dynamics by Means of Diğusive Representation”, IEEE Transactions on Circuits and Systems I, 51 (9), 1801–1813, 2004.
  • C. Casenave, G. Montseny, “Identi…cation and state realisation of non-rational convolution models by means of diğusive representation”, Control Theory and Applications, IET, 5 (07), 934–942, 2011.
  • Oustaloup, A. La commande CRONE: commande robuste d´ ordre non entier 1991, Hermès, Paris.
  • Audounet, J., Devy-Vareta, F., and Montseny, G. Pseudo-invariant diğusive control. In 14th Symosium of mathematical theory of networks and systems, perpignan, France, 2000.
  • Devy-Vareta, F., Audounet, J., Matignon, D., and Montseny, G. Pseudo invariant by matched scaling: application to robust control of *exible beam. In 2nd European conference on struc- tural control, France, 2000.
  • D. Boudjehem, B. Boudjehem, A. Boukaache. “Reducing dimension in global optimization”. International Journal of Computational Methods, 8 (03), 535–544, 2011.
Year 2018, Volume: 67 Issue: 1, 168 - 178, 01.02.2018
https://doi.org/10.1501/Commua1_0000000840

Abstract

References

  • I. S. Jesus, J. A. T. Machado, “Fractional control of heat diğusion systems”. Nonlinear Dynamics, 54 (3), 263–282, 2008.
  • D. Boudjehem, B. Boudjehem, “A fractional model for robust fractional order Smith predic- tor”. Nonlinear Dynamics, 73 (3), 1557–1563, 2013.
  • B. Boudjehem, D. Boudjehem, “Fractional order controller design for desired response”. Pro- ceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 227 (12), 243–251, 2013.
  • G. Montseny. “Simple Approach to Approximation and Dynamical Realization of Pseudo- diğerential Time Operators such as Fractional ones”, IEEE Transactions on Circuits and Systems II, 51 (11), 613–618.
  • G. Montseny, Diğ usive representation of pseudo-diğ erential time-operators. LAAS, 1998.
  • G. Montseny, “Diğusive wave-absorbing control: Example of the boundary stabilization of a thin *exible beam”. Journal of Vibration and Control, 18 (11), 1708–1721, 2012.
  • L. Laudebat, P. Bidan, G. Montseny, “Modeling and Optimal Identi…cation of Pseudodif- ferential Electrical Dynamics by Means of Diğusive Representation”, IEEE Transactions on Circuits and Systems I, 51 (9), 1801–1813, 2004.
  • C. Casenave, G. Montseny, “Identi…cation and state realisation of non-rational convolution models by means of diğusive representation”, Control Theory and Applications, IET, 5 (07), 934–942, 2011.
  • Oustaloup, A. La commande CRONE: commande robuste d´ ordre non entier 1991, Hermès, Paris.
  • Audounet, J., Devy-Vareta, F., and Montseny, G. Pseudo-invariant diğusive control. In 14th Symosium of mathematical theory of networks and systems, perpignan, France, 2000.
  • Devy-Vareta, F., Audounet, J., Matignon, D., and Montseny, G. Pseudo invariant by matched scaling: application to robust control of *exible beam. In 2nd European conference on struc- tural control, France, 2000.
  • D. Boudjehem, B. Boudjehem, A. Boukaache. “Reducing dimension in global optimization”. International Journal of Computational Methods, 8 (03), 535–544, 2011.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Djalil Boudjehem This is me

Badreddine Boudjehem This is me

Belgacem Mecherı This is me

Publication Date February 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 1

Cite

APA Boudjehem, D., Boudjehem, B., & Mecherı, B. (2018). DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 168-178. https://doi.org/10.1501/Commua1_0000000840
AMA Boudjehem D, Boudjehem B, Mecherı B. DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2018;67(1):168-178. doi:10.1501/Commua1_0000000840
Chicago Boudjehem, Djalil, Badreddine Boudjehem, and Belgacem Mecherı. “DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 1 (February 2018): 168-78. https://doi.org/10.1501/Commua1_0000000840.
EndNote Boudjehem D, Boudjehem B, Mecherı B (February 1, 2018) DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 1 168–178.
IEEE D. Boudjehem, B. Boudjehem, and B. Mecherı, “DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 1, pp. 168–178, 2018, doi: 10.1501/Commua1_0000000840.
ISNAD Boudjehem, Djalil et al. “DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/1 (February 2018), 168-178. https://doi.org/10.1501/Commua1_0000000840.
JAMA Boudjehem D, Boudjehem B, Mecherı B. DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:168–178.
MLA Boudjehem, Djalil et al. “DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 1, 2018, pp. 168-7, doi:10.1501/Commua1_0000000840.
Vancouver Boudjehem D, Boudjehem B, Mecherı B. DIFFUSIVE REPRESENTATION OF A FRACTIONAL CONTROL USING ADAPTIVE PARTITIONING ALGORITHM. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(1):168-7.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.