Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 69 Sayı: 1, 369 - 375, 30.06.2020

Öz

Kaynakça

  • Koshy, T. Fibonacci and Lucas numbers with applications, Wiley, Newyork, 2001.
  • Horadam, A. F. Complex Fibonacci numbers and Fibonacci Quaternions, Amer. Math. Monthly, 70 (1963), 289-291.
  • Iyer, M. R. A note on Fibonacci Quaternions, The Fib. Quarterly, 3 (1969), 225-229.
  • Swamy, M. N. S. On generalized Fibonacci quaternions, The Fib. Quarterly, 5 (1973), 547-550.
  • Halıcı, S. On Fibonacci Quaterions, Adv. Appl. Clifford Algebras, 12 (2012), 321-327.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Split Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 23 (2013), 535-545.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Fibonacci Generalized Quaternions, Adv. Appl. Clifford Algebras, 24 (2014), 631-641.
  • Tan, E., Yılmaz, S., Şahin, M. A new generalization of Fibonacci quaternions, Chaos Solitions Fractals, 82 2016, 1-4.
  • Tan, E., Yılmaz, S., Şahin, M. A Note on bi-periodic Fibonacci and Lucas quaternions, Chaos Solitions Fractals, 85 2016, 138-142.
  • Tan, E., Sahin, M., Yilmaz, S. The generalized bi-periodic Fibonacci quaternions and octonions. Novi Sad J. Math. doi.org/10.30755/NSJOM.07284.
  • Morais, J. P., Georgiev, S., Spröbig, W. Real Quaternionic Calculus Handbook, Birkhauser, London, 2014.

More identities for Fibonacci and Lucas quaternions

Yıl 2020, Cilt: 69 Sayı: 1, 369 - 375, 30.06.2020

Öz

In this paper, we define the associate matrix as%
\begin{equation*}
F=\left( 
\begin{array}{cc}
1+i+2j+3k & i+j+2k \\ 
i+j+2k & 1+j+k%
\end{array}%
\right) .
\end{equation*}%
By the means of the matrix $F,$ we give several identities about Fibonacci
and Lucas quaternions by matrix methods. Since there are two different
determinant definitions of a quaternion square matrix (whose entries are
quaternions), we obtain different Cassini identities for Fibonacci and Lucas
quaternions apart from Cassini identities that given in the papers \cite%
{halici} and \cite{akyigit2}.

Kaynakça

  • Koshy, T. Fibonacci and Lucas numbers with applications, Wiley, Newyork, 2001.
  • Horadam, A. F. Complex Fibonacci numbers and Fibonacci Quaternions, Amer. Math. Monthly, 70 (1963), 289-291.
  • Iyer, M. R. A note on Fibonacci Quaternions, The Fib. Quarterly, 3 (1969), 225-229.
  • Swamy, M. N. S. On generalized Fibonacci quaternions, The Fib. Quarterly, 5 (1973), 547-550.
  • Halıcı, S. On Fibonacci Quaterions, Adv. Appl. Clifford Algebras, 12 (2012), 321-327.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Split Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 23 (2013), 535-545.
  • Akyiğit, M., Kösal, H. H., Tosun, M. Fibonacci Generalized Quaternions, Adv. Appl. Clifford Algebras, 24 (2014), 631-641.
  • Tan, E., Yılmaz, S., Şahin, M. A new generalization of Fibonacci quaternions, Chaos Solitions Fractals, 82 2016, 1-4.
  • Tan, E., Yılmaz, S., Şahin, M. A Note on bi-periodic Fibonacci and Lucas quaternions, Chaos Solitions Fractals, 85 2016, 138-142.
  • Tan, E., Sahin, M., Yilmaz, S. The generalized bi-periodic Fibonacci quaternions and octonions. Novi Sad J. Math. doi.org/10.30755/NSJOM.07284.
  • Morais, J. P., Georgiev, S., Spröbig, W. Real Quaternionic Calculus Handbook, Birkhauser, London, 2014.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Nurettin Irmak 0000-0003-0409-4342

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 4 Temmuz 2018
Kabul Tarihi 31 Ekim 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 69 Sayı: 1

Kaynak Göster

APA Irmak, N. (2020). More identities for Fibonacci and Lucas quaternions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 369-375.
AMA Irmak N. More identities for Fibonacci and Lucas quaternions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Haziran 2020;69(1):369-375.
Chicago Irmak, Nurettin. “More Identities for Fibonacci and Lucas Quaternions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, sy. 1 (Haziran 2020): 369-75.
EndNote Irmak N (01 Haziran 2020) More identities for Fibonacci and Lucas quaternions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 369–375.
IEEE N. Irmak, “More identities for Fibonacci and Lucas quaternions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 69, sy. 1, ss. 369–375, 2020.
ISNAD Irmak, Nurettin. “More Identities for Fibonacci and Lucas Quaternions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (Haziran 2020), 369-375.
JAMA Irmak N. More identities for Fibonacci and Lucas quaternions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:369–375.
MLA Irmak, Nurettin. “More Identities for Fibonacci and Lucas Quaternions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 69, sy. 1, 2020, ss. 369-75.
Vancouver Irmak N. More identities for Fibonacci and Lucas quaternions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):369-75.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.