Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 69 Sayı: 1, 307 - 319, 30.06.2020
https://doi.org/10.31801/cfsuasmas.456764

Öz

Kaynakça

  • Akivis, M.A. and Goldberg, V.V., Singular points of lightlike hypersurfaces of the de Sitter space, Publications De L'Instıtut Mathematique, Nouvelle serie, 63(77), (1998), 81-101.
  • Bardeen, J. M. Carter, B. Hawking, S. W., The four laws of black hole mechanics, Comm. Math. Phys., 31, (1973), 161-170.
  • Coken, A.C, CiftCi, U., On the Cartan curvatures of a null curve in Minkowski spacetime, Geometriae Dedicata, 114, (2005), 71-78.
  • Clement, G., Black holes with a null Killing vector in three-dimensional massive gravity, Class. Quantum Grav., 26, (2009), 165002.
  • Duggal, K.L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, 364, Mathematics and its Aplications. Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1996.
  • Duggal, K.L., Constant curvature and warped product globally null manifolds, J. Geom. Phy., 43, (2002), 327-340.
  • Duggal, K.L., On scalar curvature in lightlike geometry, J. Geom. Phy., 57, (2007), 473-481.
  • Duggal, K.L., A Report on canonical null curves and screen distributions for lightlike geometry, Acta Appl Math., 95, (2007), 135-149.
  • Duggal, K.L. and Jin, D.H., Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, Singapore, 2007.
  • Gourgoulhon, E. and Jaramillo, J. L., A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rep. 423, (2006), 159-294.
  • Hawking, S.W., Black holes in general relativity, Comm. Math. Phys., 25, (1972), 152-166.
  • Ilarslan K. and Nešović, E., On Bishop frame of a null Cartan curve in Minkowski space-time, International Journal of Geometric Methods in Modern Physics, 15(8), (2018).
  • Korzynski, M., Lewandowski,J. and Pawlowski, T., Mechanics of multidimensional isolated horizons, Class. Quantum Grav., 22, (2005), 2001-2016.
  • Nersessian, A. and Ramos, E., Massive spinning particles and the geometry of null curves, Phys. Lett. B, 445, (1998), 123-128.
  • Nersessian, A. and Ramos, E., A geometrical particle model for anyons, Modern Phys. Lett. A, 14, (1999), 2033-2037.
  • O'Neill, B. Semi-Riemannian geometry, Academic Press, New York, 1983.
  • Rudnicki, W., Black hole interiors cannot be totally vicious, Phys. Lett. A, 208, (1995), 53-58.
  • Rudnicki, W., Budzynski, R. J. and Kondracki W., Generalized strong curvature singularities and weak cosmic censorship in cosmological space- times, Mod. Phys. Lett. A, 21, (2006), 1501-1509.
  • de Souza, M.M., The Lorentz-Dirac equation and the structures of spacetime, Braz. J. Phys., 28, (1998), 250-256.
  • Sultana, J. and Dyer, C.C., Cosmological black holes: A black hole in the Einstein-de Sitter universe, Gen. Relativ. Gravit., 37, (2005), 1347-1370.
  • Tertychniy, S.I., The black hole formed by electromagnetic radiation, Phys. Lett. A, 96, (1983), 73-75.
  • Wang, Z. and Pei, D., Singularities of ruled null surfaces of the principal normal indicatrix to a null Cartan curve in de Sitter 3-space, Phys. Lett. B, 689, (2010), 101-106.
  • Liu, X. and Wang, Z., On lightlike hypersurfaces and lightlike focal sets of null Cartan curves in Lorentz-Minkowski spacetime, J. Nonlinear Sci. Appl., (2015), 1-12.
  • Vincent, M. and James, I., Symmetries of cosmological Cauchy horizons, Comm. Math. Phys., 89, (1983), 387-413.

Lightlike hypersurfaces and lightlike focal sets with respect to Bishop frame in 4-dimensional Minkowski Space E1-4.

Yıl 2020, Cilt: 69 Sayı: 1, 307 - 319, 30.06.2020
https://doi.org/10.31801/cfsuasmas.456764

Öz

In this article, light-like hypersurfaces that is derived by null Cartan curves will be examined and discussed. The singularities of lightlike hypersurfaces and light-like focal sets are investigated by using the Bishop frame on the Null Cartan curves. We obtain that the types of these singularities and the order of contact between the null Cartan curves are closely related to the Bishop curvatures of the null Cartan curves. Moreover, two examples of light-like hypersurfaces and light-like focal sets are given to illustrate our theoretical results.

Kaynakça

  • Akivis, M.A. and Goldberg, V.V., Singular points of lightlike hypersurfaces of the de Sitter space, Publications De L'Instıtut Mathematique, Nouvelle serie, 63(77), (1998), 81-101.
  • Bardeen, J. M. Carter, B. Hawking, S. W., The four laws of black hole mechanics, Comm. Math. Phys., 31, (1973), 161-170.
  • Coken, A.C, CiftCi, U., On the Cartan curvatures of a null curve in Minkowski spacetime, Geometriae Dedicata, 114, (2005), 71-78.
  • Clement, G., Black holes with a null Killing vector in three-dimensional massive gravity, Class. Quantum Grav., 26, (2009), 165002.
  • Duggal, K.L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, 364, Mathematics and its Aplications. Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1996.
  • Duggal, K.L., Constant curvature and warped product globally null manifolds, J. Geom. Phy., 43, (2002), 327-340.
  • Duggal, K.L., On scalar curvature in lightlike geometry, J. Geom. Phy., 57, (2007), 473-481.
  • Duggal, K.L., A Report on canonical null curves and screen distributions for lightlike geometry, Acta Appl Math., 95, (2007), 135-149.
  • Duggal, K.L. and Jin, D.H., Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, Singapore, 2007.
  • Gourgoulhon, E. and Jaramillo, J. L., A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rep. 423, (2006), 159-294.
  • Hawking, S.W., Black holes in general relativity, Comm. Math. Phys., 25, (1972), 152-166.
  • Ilarslan K. and Nešović, E., On Bishop frame of a null Cartan curve in Minkowski space-time, International Journal of Geometric Methods in Modern Physics, 15(8), (2018).
  • Korzynski, M., Lewandowski,J. and Pawlowski, T., Mechanics of multidimensional isolated horizons, Class. Quantum Grav., 22, (2005), 2001-2016.
  • Nersessian, A. and Ramos, E., Massive spinning particles and the geometry of null curves, Phys. Lett. B, 445, (1998), 123-128.
  • Nersessian, A. and Ramos, E., A geometrical particle model for anyons, Modern Phys. Lett. A, 14, (1999), 2033-2037.
  • O'Neill, B. Semi-Riemannian geometry, Academic Press, New York, 1983.
  • Rudnicki, W., Black hole interiors cannot be totally vicious, Phys. Lett. A, 208, (1995), 53-58.
  • Rudnicki, W., Budzynski, R. J. and Kondracki W., Generalized strong curvature singularities and weak cosmic censorship in cosmological space- times, Mod. Phys. Lett. A, 21, (2006), 1501-1509.
  • de Souza, M.M., The Lorentz-Dirac equation and the structures of spacetime, Braz. J. Phys., 28, (1998), 250-256.
  • Sultana, J. and Dyer, C.C., Cosmological black holes: A black hole in the Einstein-de Sitter universe, Gen. Relativ. Gravit., 37, (2005), 1347-1370.
  • Tertychniy, S.I., The black hole formed by electromagnetic radiation, Phys. Lett. A, 96, (1983), 73-75.
  • Wang, Z. and Pei, D., Singularities of ruled null surfaces of the principal normal indicatrix to a null Cartan curve in de Sitter 3-space, Phys. Lett. B, 689, (2010), 101-106.
  • Liu, X. and Wang, Z., On lightlike hypersurfaces and lightlike focal sets of null Cartan curves in Lorentz-Minkowski spacetime, J. Nonlinear Sci. Appl., (2015), 1-12.
  • Vincent, M. and James, I., Symmetries of cosmological Cauchy horizons, Comm. Math. Phys., 89, (1983), 387-413.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Zehra Ozdemir 0000-0001-9750-507X

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 3 Eylül 2018
Kabul Tarihi 15 Ekim 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 69 Sayı: 1

Kaynak Göster

APA Ozdemir, Z. (2020). Lightlike hypersurfaces and lightlike focal sets with respect to Bishop frame in 4-dimensional Minkowski Space E1-4. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 307-319. https://doi.org/10.31801/cfsuasmas.456764
AMA Ozdemir Z. Lightlike hypersurfaces and lightlike focal sets with respect to Bishop frame in 4-dimensional Minkowski Space E1-4. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Haziran 2020;69(1):307-319. doi:10.31801/cfsuasmas.456764
Chicago Ozdemir, Zehra. “Lightlike Hypersurfaces and Lightlike Focal Sets With Respect to Bishop Frame in 4-Dimensional Minkowski Space E1-4”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, sy. 1 (Haziran 2020): 307-19. https://doi.org/10.31801/cfsuasmas.456764.
EndNote Ozdemir Z (01 Haziran 2020) Lightlike hypersurfaces and lightlike focal sets with respect to Bishop frame in 4-dimensional Minkowski Space E1-4. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 307–319.
IEEE Z. Ozdemir, “Lightlike hypersurfaces and lightlike focal sets with respect to Bishop frame in 4-dimensional Minkowski Space E1-4”., Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 69, sy. 1, ss. 307–319, 2020, doi: 10.31801/cfsuasmas.456764.
ISNAD Ozdemir, Zehra. “Lightlike Hypersurfaces and Lightlike Focal Sets With Respect to Bishop Frame in 4-Dimensional Minkowski Space E1-4”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (Haziran 2020), 307-319. https://doi.org/10.31801/cfsuasmas.456764.
JAMA Ozdemir Z. Lightlike hypersurfaces and lightlike focal sets with respect to Bishop frame in 4-dimensional Minkowski Space E1-4. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:307–319.
MLA Ozdemir, Zehra. “Lightlike Hypersurfaces and Lightlike Focal Sets With Respect to Bishop Frame in 4-Dimensional Minkowski Space E1-4”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 69, sy. 1, 2020, ss. 307-19, doi:10.31801/cfsuasmas.456764.
Vancouver Ozdemir Z. Lightlike hypersurfaces and lightlike focal sets with respect to Bishop frame in 4-dimensional Minkowski Space E1-4. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):307-19.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.