Research Article
BibTex RIS Cite
Year 2020, Volume: 69 Issue: 2, 1161 - 1170, 31.12.2020
https://doi.org/10.31801/cfsuasmas.733922

Abstract

References

  • Abd El Hady, N. E. (2014). Exponentiated transmuted weibull distribution a generalization of the weibull distribution. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 8(6):903 – 911.
  • Alizadeh, M., Merovci, F., and Hamedani, G. G. (2017). Generalized transmuted family of distributions: properties and applications. Hacettepe Journal of Mathematics and Statistics, 46:645–667.
  • Ashour, S. K. and Eltehiwy, M. A. (2013). Transmuted exponentiated lomax distribution. Aust J Basic Appl Sci, 7(7):658–667.
  • Das, K. K. and Barman, L. (2015). On some generalized transmuted distributions. Int. J. Sci. Eng. Res, 6:1686–1691.
  • Eltehiwy, M. and Ashour, S. (2013). Transmuted exponentiated modified weibull distribution. International Journal of Basic and Applied Sciences, 2(3):258–269.
  • Eryilmaz, S. (2014). Computing reliability indices of repairable systems via signature. Journal of Computational and Applied Mathematics, 260:229 – 235.
  • Franko, C., Ozkut, M., and Kan, C. (2015). Reliability of coherent systems with a single cold standby component. Journal of Computational and Applied Mathematics, 281:230 – 238.
  • Granzotto, D., Louzada, F., and Balakrishnan, N. (2017). Cubic rank transmuted distributions: inferential issues and applications. Journal of Statistical Computation and Simulation, 87(14):2760–2778.
  • Mansour, M. M., Enayat, M. A., Hamed, S. M., and Mohamed, M. S. (2015). A new transmuted additive weibull distribution based on a new method for adding a parameter to a family of distributions. Int. J. Appl. Math. Sci, 8:31–51.
  • Mansour, M. M. and Mohamed, S. M. (2015). A new generalized of transmuted lindley distribution. Appl. Math. Sci, 9:2729–2748.
  • Merovci, F. (2013). Transmuted exponentiated exponential distribution. Mathematical Sciences and Applications E-Notes, 1(2):112–122.
  • Nofal, Z. M., Afify, A. Z., Yousof, H. M., and Cordeiro, G. M. (2017). The generalized transmuted-g family of distributions. Communications in StatisticsTheory and Methods, 46(8):4119–4136.
  • Nofal, Z. M. and El Gebaly, Y. M. (2017). The generalized transmuted weibull distribution for lifetime data. Pakistan Journal of Statistics and Operation Research, 13(2):355–378.
  • Rahman, M. M., Al-Zahrani, B., and Shahbaz, M. Q. (2018). A general transmuted family of distributions. Pakistan Journal of Statistics and Operation Research, 14(2).
  • Saboor, A., Khan, M. N., Cordeiro, G. M., Pascoa, M. A., Ramos, P. L., and Kamal, M. (2019). Some new results for the transmuted generalized gamma distribution. Journal of Computational and Applied Mathematics, 352:165 – 180.
  • Shaw, W. T. and Buckley, I. R. C. (2007). The alchemy of probability distributions: Beyond gram-charlier & cornish-fisher expansions, and skew-normal or kurtotic-normal distributions. Submitted, Feb, 7:64.
  • Shaw, W. T. and Buckley, I. R. C. (2009). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. ArXiv e-prints.
  • Yilmaz, M., Potas, N., and Topcu, B. (2015). Reliability properties of systems with three dependent components. In Chaos, Complexity and Leadership 2013, pages 117–127. Springer.

Some comments on methodology of cubic rank transmuted distributions

Year 2020, Volume: 69 Issue: 2, 1161 - 1170, 31.12.2020
https://doi.org/10.31801/cfsuasmas.733922

Abstract

In this study, at first a new polynomial rank transmutation is proposed. Then, a new cubic rank transmutation is introduced by simplifying the set of transmutation parameters in order to improve its usefulness in statistical modeling. The purpose of this comment is to clarify some issues that exist in the methodology of obtaining the distribution by the cubic transmutation and the stage of proofing it. In this way, both the parameter space is expanded and the process of establishing the cubic transformed distribution family is given.


References

  • Abd El Hady, N. E. (2014). Exponentiated transmuted weibull distribution a generalization of the weibull distribution. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 8(6):903 – 911.
  • Alizadeh, M., Merovci, F., and Hamedani, G. G. (2017). Generalized transmuted family of distributions: properties and applications. Hacettepe Journal of Mathematics and Statistics, 46:645–667.
  • Ashour, S. K. and Eltehiwy, M. A. (2013). Transmuted exponentiated lomax distribution. Aust J Basic Appl Sci, 7(7):658–667.
  • Das, K. K. and Barman, L. (2015). On some generalized transmuted distributions. Int. J. Sci. Eng. Res, 6:1686–1691.
  • Eltehiwy, M. and Ashour, S. (2013). Transmuted exponentiated modified weibull distribution. International Journal of Basic and Applied Sciences, 2(3):258–269.
  • Eryilmaz, S. (2014). Computing reliability indices of repairable systems via signature. Journal of Computational and Applied Mathematics, 260:229 – 235.
  • Franko, C., Ozkut, M., and Kan, C. (2015). Reliability of coherent systems with a single cold standby component. Journal of Computational and Applied Mathematics, 281:230 – 238.
  • Granzotto, D., Louzada, F., and Balakrishnan, N. (2017). Cubic rank transmuted distributions: inferential issues and applications. Journal of Statistical Computation and Simulation, 87(14):2760–2778.
  • Mansour, M. M., Enayat, M. A., Hamed, S. M., and Mohamed, M. S. (2015). A new transmuted additive weibull distribution based on a new method for adding a parameter to a family of distributions. Int. J. Appl. Math. Sci, 8:31–51.
  • Mansour, M. M. and Mohamed, S. M. (2015). A new generalized of transmuted lindley distribution. Appl. Math. Sci, 9:2729–2748.
  • Merovci, F. (2013). Transmuted exponentiated exponential distribution. Mathematical Sciences and Applications E-Notes, 1(2):112–122.
  • Nofal, Z. M., Afify, A. Z., Yousof, H. M., and Cordeiro, G. M. (2017). The generalized transmuted-g family of distributions. Communications in StatisticsTheory and Methods, 46(8):4119–4136.
  • Nofal, Z. M. and El Gebaly, Y. M. (2017). The generalized transmuted weibull distribution for lifetime data. Pakistan Journal of Statistics and Operation Research, 13(2):355–378.
  • Rahman, M. M., Al-Zahrani, B., and Shahbaz, M. Q. (2018). A general transmuted family of distributions. Pakistan Journal of Statistics and Operation Research, 14(2).
  • Saboor, A., Khan, M. N., Cordeiro, G. M., Pascoa, M. A., Ramos, P. L., and Kamal, M. (2019). Some new results for the transmuted generalized gamma distribution. Journal of Computational and Applied Mathematics, 352:165 – 180.
  • Shaw, W. T. and Buckley, I. R. C. (2007). The alchemy of probability distributions: Beyond gram-charlier & cornish-fisher expansions, and skew-normal or kurtotic-normal distributions. Submitted, Feb, 7:64.
  • Shaw, W. T. and Buckley, I. R. C. (2009). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. ArXiv e-prints.
  • Yilmaz, M., Potas, N., and Topcu, B. (2015). Reliability properties of systems with three dependent components. In Chaos, Complexity and Leadership 2013, pages 117–127. Springer.
There are 18 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Mehmet Yılmaz 0000-0002-9762-6688

Monireh Hameldarbandı 0000-0002-3543-3709

Publication Date December 31, 2020
Submission Date May 7, 2020
Acceptance Date June 12, 2020
Published in Issue Year 2020 Volume: 69 Issue: 2

Cite

APA Yılmaz, M., & Hameldarbandı, M. (2020). Some comments on methodology of cubic rank transmuted distributions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1161-1170. https://doi.org/10.31801/cfsuasmas.733922
AMA Yılmaz M, Hameldarbandı M. Some comments on methodology of cubic rank transmuted distributions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1161-1170. doi:10.31801/cfsuasmas.733922
Chicago Yılmaz, Mehmet, and Monireh Hameldarbandı. “Some Comments on Methodology of Cubic Rank Transmuted Distributions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1161-70. https://doi.org/10.31801/cfsuasmas.733922.
EndNote Yılmaz M, Hameldarbandı M (December 1, 2020) Some comments on methodology of cubic rank transmuted distributions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1161–1170.
IEEE M. Yılmaz and M. Hameldarbandı, “Some comments on methodology of cubic rank transmuted distributions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1161–1170, 2020, doi: 10.31801/cfsuasmas.733922.
ISNAD Yılmaz, Mehmet - Hameldarbandı, Monireh. “Some Comments on Methodology of Cubic Rank Transmuted Distributions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1161-1170. https://doi.org/10.31801/cfsuasmas.733922.
JAMA Yılmaz M, Hameldarbandı M. Some comments on methodology of cubic rank transmuted distributions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1161–1170.
MLA Yılmaz, Mehmet and Monireh Hameldarbandı. “Some Comments on Methodology of Cubic Rank Transmuted Distributions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1161-70, doi:10.31801/cfsuasmas.733922.
Vancouver Yılmaz M, Hameldarbandı M. Some comments on methodology of cubic rank transmuted distributions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1161-70.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.