Research Article
BibTex RIS Cite
Year 2020, Volume: 69 Issue: 2, 1235 - 1239, 31.12.2020
https://doi.org/10.31801/cfsuasmas.768497

Abstract

References

  • Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R., Coloring with no 2-colored P4’s. The Electronic Journal of Combinatorics 11 (2004), R26, doi:10. 37236/1779.
  • Bondy, J.A., Murty, U.S.R. Graph theory with applications, MacMillan, London 1976.
  • Clark, J., Holton, D. A., A …rst look at graph theory, World Scienti…c, 1991, doi:10.1142/1280. [ Coleman, T.F., Moré, J., Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming, 28(3) (1984), 243–270, doi:10.1007/BF02612334.
  • Fertin, G., Raspaud, A., Reed, B., On Star coloring of graphs, Journal of Graph theory, 47(3) (2004), 163–182, doi:10.1002/jgt.20029.
  • Grünbaum, B., Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14 (1973), 390–408, doi:10.1007/BF02764716
  • Harary, F., Graph theory, Narosa Publishing Home, New Delhi, 1969.
  • Imrich, W., Klavµzar, S., Product Graphs: Structure and Recognition, Wiley, New York 2000.

On star coloring of modular product of graphs

Year 2020, Volume: 69 Issue: 2, 1235 - 1239, 31.12.2020
https://doi.org/10.31801/cfsuasmas.768497

Abstract

A star coloring of a graph $G$ is a proper vertex coloring in which every path on four vertices in $G$ is not bicolored. The star chromatic number $\chi_{s}\left(G\right)$ of $G$ is the least number of colors needed to star color $G$. In this paper, we find the exact values of the star chromatic number of modular product of complete graph with complete graph $K_m \diamond K_n$, path with complete graph $P_m \diamond K_n$ and star graph with complete graph $K_{1,m}\diamond K_n$.

\par All graphs in this paper are finite, simple, connected and undirected graph and we follow \cite{bm, cla, f} for terminology and notation that are not defined here. We denote the vertex set and the edge set of $G$ by $V(G)$ and $E(G)$, respectively. Branko Gr\"{u}nbaum introduced the concept of star chromatic number in 1973. A star coloring \cite{alberton, fertin, bg} of a graph $G$ is a proper vertex coloring in which every path on four vertices uses at least three distinct colors. The star chromatic number $\chi_{s}\left(G\right)$ of $G$ is the least number of colors needed to star color $G$.

\par During the years star coloring of graphs has been studied extensively by several authors, for instance see \cite{alberton, col, fertin}.

References

  • Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R., Coloring with no 2-colored P4’s. The Electronic Journal of Combinatorics 11 (2004), R26, doi:10. 37236/1779.
  • Bondy, J.A., Murty, U.S.R. Graph theory with applications, MacMillan, London 1976.
  • Clark, J., Holton, D. A., A …rst look at graph theory, World Scienti…c, 1991, doi:10.1142/1280. [ Coleman, T.F., Moré, J., Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming, 28(3) (1984), 243–270, doi:10.1007/BF02612334.
  • Fertin, G., Raspaud, A., Reed, B., On Star coloring of graphs, Journal of Graph theory, 47(3) (2004), 163–182, doi:10.1002/jgt.20029.
  • Grünbaum, B., Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14 (1973), 390–408, doi:10.1007/BF02764716
  • Harary, F., Graph theory, Narosa Publishing Home, New Delhi, 1969.
  • Imrich, W., Klavµzar, S., Product Graphs: Structure and Recognition, Wiley, New York 2000.
There are 7 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Kaliraj K 0000-0003-0902-3842

Sivakami R 0000-0001-6066-4886

Vernold Vıvın J 0000-0002-3027-2010

Publication Date December 31, 2020
Submission Date July 12, 2020
Acceptance Date August 20, 2020
Published in Issue Year 2020 Volume: 69 Issue: 2

Cite

APA K, K., R, S., & Vıvın J, V. (2020). On star coloring of modular product of graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1235-1239. https://doi.org/10.31801/cfsuasmas.768497
AMA K K, R S, Vıvın J V. On star coloring of modular product of graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2020;69(2):1235-1239. doi:10.31801/cfsuasmas.768497
Chicago K, Kaliraj, Sivakami R, and Vernold Vıvın J. “On Star Coloring of Modular Product of Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (December 2020): 1235-39. https://doi.org/10.31801/cfsuasmas.768497.
EndNote K K, R S, Vıvın J V (December 1, 2020) On star coloring of modular product of graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 2 1235–1239.
IEEE K. K, S. R, and V. Vıvın J, “On star coloring of modular product of graphs”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 2, pp. 1235–1239, 2020, doi: 10.31801/cfsuasmas.768497.
ISNAD K, Kaliraj et al. “On Star Coloring of Modular Product of Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/2 (December 2020), 1235-1239. https://doi.org/10.31801/cfsuasmas.768497.
JAMA K K, R S, Vıvın J V. On star coloring of modular product of graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:1235–1239.
MLA K, Kaliraj et al. “On Star Coloring of Modular Product of Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 2, 2020, pp. 1235-9, doi:10.31801/cfsuasmas.768497.
Vancouver K K, R S, Vıvın J V. On star coloring of modular product of graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(2):1235-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.