Research Article
BibTex RIS Cite
Year 2021, Volume: 70 Issue: 1, 269 - 278, 30.06.2021
https://doi.org/10.31801/cfsuasmas.771172

Abstract

References

  • Ahmad, B., Alsaedi, A., Kirane, M., Toberek, B. T., Hermite-Hadamard, Hermite-HadamarFejer, Dragomir-Agarwal and pachpatte tyoe inequalities for convex functions via new fractional integrals, ArXiv: 1701.00092
  • DÌaz, R., Pariguan, E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15(2) (2007), 179-192.
  • Galeano, J., N·poles, J., Perez, E., On a general formulation of the fractional operator Riemann-Liouville and related inequalities, submitted.
  • Hadamard, J., Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-216.
  • Houas, M., Dahmani, Z., Sarikaya, M. Z., Some integral inequalities for (k,s) - Riemann Liouville fractional operators, Journal of Interdisciplinary Mathematics, 23(8) (2020), 1487- 1495, https://doi.org/10.1080/09720502.201
  • Katugampola, U. N., New Approach Generalized Fractional Integral, Applied Math and Comp., 218 (2011), 860-865, https://doi.org/10.1016/j.amc.2011.03.062.
  • Mubeen, S., Habibullah, G. M., K-fractional integrals and applications, Int. J. Contem. Math. Sci., 7(2) (2012), 89-94.
  • Qi, F., Guo, B. N., Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, Rev. R. Acad. Cienc. Exactas FÃ-s. Nat., Ser. A Mat., 111(2) (2017), 425-434, https://doi.org/10.1007/s13398-016-0302-6.
  • Rainville, E. D., Special Functions, Macmillan Co., New York, 1960.
  • Yang, Z. H., Tian, J. F., Monotonicity and inequalities for the gamma function, J. Inequal. Appl., 317 (2017), https://doi.org/10.1186/s13660-017-1591-9.
  • Yang, Z. H., Tian, J. F., Monotonicity and sharp inequalities related to gamma function, J. Math. Inequal., 12(1) (2018), 1-22, https://doi.org/10.7153/jmi-2018-12-01.

Several integral inequalities for generalized Riemann-Liouville fractional operators

Year 2021, Volume: 70 Issue: 1, 269 - 278, 30.06.2021
https://doi.org/10.31801/cfsuasmas.771172

Abstract

In this paper, using a generalized integral operator, of the Riemann-Liouville type, defined and studied in a previous work by the authors, we obtain various integral inequalities for positive functions, which contains several reported in the literature. Various remarks carried out throughout the work and pointed out in the Conclusions, show the scope and strength of our results, in particular, it is shown that under particular cases of the considered kernel, several known fractional integral operators are obtained.

References

  • Ahmad, B., Alsaedi, A., Kirane, M., Toberek, B. T., Hermite-Hadamard, Hermite-HadamarFejer, Dragomir-Agarwal and pachpatte tyoe inequalities for convex functions via new fractional integrals, ArXiv: 1701.00092
  • DÌaz, R., Pariguan, E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15(2) (2007), 179-192.
  • Galeano, J., N·poles, J., Perez, E., On a general formulation of the fractional operator Riemann-Liouville and related inequalities, submitted.
  • Hadamard, J., Etude sur les proprietes des fonctions entieres et en particulier dune fonction consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-216.
  • Houas, M., Dahmani, Z., Sarikaya, M. Z., Some integral inequalities for (k,s) - Riemann Liouville fractional operators, Journal of Interdisciplinary Mathematics, 23(8) (2020), 1487- 1495, https://doi.org/10.1080/09720502.201
  • Katugampola, U. N., New Approach Generalized Fractional Integral, Applied Math and Comp., 218 (2011), 860-865, https://doi.org/10.1016/j.amc.2011.03.062.
  • Mubeen, S., Habibullah, G. M., K-fractional integrals and applications, Int. J. Contem. Math. Sci., 7(2) (2012), 89-94.
  • Qi, F., Guo, B. N., Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function, Rev. R. Acad. Cienc. Exactas FÃ-s. Nat., Ser. A Mat., 111(2) (2017), 425-434, https://doi.org/10.1007/s13398-016-0302-6.
  • Rainville, E. D., Special Functions, Macmillan Co., New York, 1960.
  • Yang, Z. H., Tian, J. F., Monotonicity and inequalities for the gamma function, J. Inequal. Appl., 317 (2017), https://doi.org/10.1186/s13660-017-1591-9.
  • Yang, Z. H., Tian, J. F., Monotonicity and sharp inequalities related to gamma function, J. Math. Inequal., 12(1) (2018), 1-22, https://doi.org/10.7153/jmi-2018-12-01.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Juan Gabriel Galeano Delgado This is me

Juan Eduardo Napoles Valdes 0000-0003-2470-1090

Edgardo Pérez Reyes This is me 0000-0002-7666-1636

Publication Date June 30, 2021
Submission Date July 18, 2020
Acceptance Date December 20, 2020
Published in Issue Year 2021 Volume: 70 Issue: 1

Cite

APA Galeano Delgado, J. G., Napoles Valdes, J. E., & Pérez Reyes, E. (2021). Several integral inequalities for generalized Riemann-Liouville fractional operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 269-278. https://doi.org/10.31801/cfsuasmas.771172
AMA Galeano Delgado JG, Napoles Valdes JE, Pérez Reyes E. Several integral inequalities for generalized Riemann-Liouville fractional operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2021;70(1):269-278. doi:10.31801/cfsuasmas.771172
Chicago Galeano Delgado, Juan Gabriel, Juan Eduardo Napoles Valdes, and Edgardo Pérez Reyes. “Several Integral Inequalities for Generalized Riemann-Liouville Fractional Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 1 (June 2021): 269-78. https://doi.org/10.31801/cfsuasmas.771172.
EndNote Galeano Delgado JG, Napoles Valdes JE, Pérez Reyes E (June 1, 2021) Several integral inequalities for generalized Riemann-Liouville fractional operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 1 269–278.
IEEE J. G. Galeano Delgado, J. E. Napoles Valdes, and E. Pérez Reyes, “Several integral inequalities for generalized Riemann-Liouville fractional operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 1, pp. 269–278, 2021, doi: 10.31801/cfsuasmas.771172.
ISNAD Galeano Delgado, Juan Gabriel et al. “Several Integral Inequalities for Generalized Riemann-Liouville Fractional Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/1 (June 2021), 269-278. https://doi.org/10.31801/cfsuasmas.771172.
JAMA Galeano Delgado JG, Napoles Valdes JE, Pérez Reyes E. Several integral inequalities for generalized Riemann-Liouville fractional operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:269–278.
MLA Galeano Delgado, Juan Gabriel et al. “Several Integral Inequalities for Generalized Riemann-Liouville Fractional Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 1, 2021, pp. 269-78, doi:10.31801/cfsuasmas.771172.
Vancouver Galeano Delgado JG, Napoles Valdes JE, Pérez Reyes E. Several integral inequalities for generalized Riemann-Liouville fractional operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(1):269-78.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.