Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 1, 237 - 251, 30.03.2022
https://doi.org/10.31801/cfsuasmas.943912

Abstract

Supporting Institution

Tübitak

Project Number

119F425

References

  • Abercrombie, A. G., Beatty sequences and multiplicative number theory, Acta Arith., 70(3) (1995), 195–207. http://doi.org/10.4064/aa-70-3-195-207
  • Abercrombie, A. G., Banks, W. D., Shparlinski, I. E., Arithmetic functions on Beatty sequences, Acta Arith. 136(1) (2009), 81–89. http://doi.org/10.4064/aa136-1-6
  • Akbal, Y., A short note on some arithmetical properties of the integer part of αp, Turkish Journal of Mathematics, 43(3) (2019), 1253–1262. http://doi.org/10.3906/mat-1809-43
  • Akbal, Y., A note on values of Beatty sequences that are free of large prime factors, Colloquium Mathematicum, 160(1) (2020), 53–64. http://doi.org/10.4064/cm7715-2-2019
  • Kumchev, A. V., On sums of primes from Beatty sequences, Integers 8 (2008), A8, 12 pp.
  • Banks, W. D., Shparlinski, I. E., Non-residues and primitive roots in Beatty sequences, Bull. Austral. Math. Soc., 73(3) (2006), 433–443. http://doi.org/10.1017/S0004972700035449
  • Banks, W. D., Shparlinski, I. E., Short character sums with Beatty sequences, Math. Res. Lett., 13 (2006), 539–547. http://doi.org/10.4310/MRL.2006.v13.n4.a4
  • Banks, W. D., Shparlinski, I. E., Prime numbers with Beatty sequences, Colloq. Math., 115(2) (2009), 147–157. http://doi.org/10.4064/cm115-2-1
  • Banks, W. D., Shparlinski, I. E., Prime divisors in Beatty sequences, J. Number Theory, 123(2) (2007), 413–425. http://doi.org/10.1016/j.jnt.2006.07.011
  • Banks, W. D., Güloğlu, A., Vaughan, R. C., Waring’s problem for Beatty sequences and a local to global principle, J. Theor. Nombres Bordeaux, 26(1) (2014), 1–16. http://doi.org/10.5802/jtnb.855
  • Banks, W. D., G¨ulo˘glu, A., Nevans, C. W., Representations of integers as sums of primes from a Beatty sequence, Acta Arith., 130(3) (2007), 255–275. http://doi.org/10.4064/aa130-3-4
  • Davenport, H., Multiplicative number theory, Third edition, Revised and with a preface by Hugh L. Montgomery, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.
  • Graham, S. W., Kolesnik, G., Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, 126, Cambridge University Press, Cambridge, 1991.
  • Güloğlu, A., Nevans, C. W., Sums of multiplicative functions over a Beatty sequence, Bull. Aust. Math. Soc., 78(2) (2008), 327–334. http://doi.org/10.1017/S0004972708000853
  • Harman, G., Primes in Beatty sequences in short intervals, Mathematika, 62(2) (2016), 572–586. http://doi.org/10.1112/S0025579315000376
  • Harman, G., Primes in intersections of Beatty sequences, J. Integer Seq., 18(7) (2015), 12 p.
  • Khinchin, A. Y., Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24(4) (1926), 706–714. http://doi.org/10.1007/BF01216806
  • Koksma, J. F., Some Theorems on Diophantine Inequalities, Scriptum no. 5, Math. Centrmn Amsterdam, 1950.
  • Li, H., Pan, H., Primes of the form ⌊αp + β⌋, J. Number Theory, 129(10) (2009), 2328–2334.
  • Mirsky, L., The number of representations of an integer as the sum of a prime and a k-free integer, Amer. Math. Monthly, 56 (1949), 17–19. http://doi.org/10.1080/00029890.1949.11990233
  • Roth, K. F., Rational approximations to algebraic numbers, Mathematika, 2 (1955), 1–20. http://doi.org/10.1112/S0025579300000644
  • Roth, K. F., Corrigendum to “Rational approximations to algebraic numbers”, Mathematika, 2 (1955), 168.
  • Montgomery, H. L., Vaughan, R. C., Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, 2007.
  • Vaughan, R. C., The general Goldbach problem with Beatty primes, Ramanujan J., 34(3) (2014), 347–359. http://doi.org/10.1007/s11139-013-9501-3
  • Vaughan, R. C., The Hardy-Littlewood Method, 2nd ed., Cambridge Univ. Press, 1997.
  • Vinogradov, I. M. The Method of Trigonometrical Sums in the Theory of Numbers, Dover Publications, Inc., Mineola, NY, 2004.

k-Free numbers and integer parts of αp

Year 2022, Volume: 71 Issue: 1, 237 - 251, 30.03.2022
https://doi.org/10.31801/cfsuasmas.943912

Abstract

In this note, we obtain asymptotic results on integer parts of αp that are free of kth powers of primes, where p is a prime number and α is a positive real number.

Project Number

119F425

References

  • Abercrombie, A. G., Beatty sequences and multiplicative number theory, Acta Arith., 70(3) (1995), 195–207. http://doi.org/10.4064/aa-70-3-195-207
  • Abercrombie, A. G., Banks, W. D., Shparlinski, I. E., Arithmetic functions on Beatty sequences, Acta Arith. 136(1) (2009), 81–89. http://doi.org/10.4064/aa136-1-6
  • Akbal, Y., A short note on some arithmetical properties of the integer part of αp, Turkish Journal of Mathematics, 43(3) (2019), 1253–1262. http://doi.org/10.3906/mat-1809-43
  • Akbal, Y., A note on values of Beatty sequences that are free of large prime factors, Colloquium Mathematicum, 160(1) (2020), 53–64. http://doi.org/10.4064/cm7715-2-2019
  • Kumchev, A. V., On sums of primes from Beatty sequences, Integers 8 (2008), A8, 12 pp.
  • Banks, W. D., Shparlinski, I. E., Non-residues and primitive roots in Beatty sequences, Bull. Austral. Math. Soc., 73(3) (2006), 433–443. http://doi.org/10.1017/S0004972700035449
  • Banks, W. D., Shparlinski, I. E., Short character sums with Beatty sequences, Math. Res. Lett., 13 (2006), 539–547. http://doi.org/10.4310/MRL.2006.v13.n4.a4
  • Banks, W. D., Shparlinski, I. E., Prime numbers with Beatty sequences, Colloq. Math., 115(2) (2009), 147–157. http://doi.org/10.4064/cm115-2-1
  • Banks, W. D., Shparlinski, I. E., Prime divisors in Beatty sequences, J. Number Theory, 123(2) (2007), 413–425. http://doi.org/10.1016/j.jnt.2006.07.011
  • Banks, W. D., Güloğlu, A., Vaughan, R. C., Waring’s problem for Beatty sequences and a local to global principle, J. Theor. Nombres Bordeaux, 26(1) (2014), 1–16. http://doi.org/10.5802/jtnb.855
  • Banks, W. D., G¨ulo˘glu, A., Nevans, C. W., Representations of integers as sums of primes from a Beatty sequence, Acta Arith., 130(3) (2007), 255–275. http://doi.org/10.4064/aa130-3-4
  • Davenport, H., Multiplicative number theory, Third edition, Revised and with a preface by Hugh L. Montgomery, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.
  • Graham, S. W., Kolesnik, G., Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, 126, Cambridge University Press, Cambridge, 1991.
  • Güloğlu, A., Nevans, C. W., Sums of multiplicative functions over a Beatty sequence, Bull. Aust. Math. Soc., 78(2) (2008), 327–334. http://doi.org/10.1017/S0004972708000853
  • Harman, G., Primes in Beatty sequences in short intervals, Mathematika, 62(2) (2016), 572–586. http://doi.org/10.1112/S0025579315000376
  • Harman, G., Primes in intersections of Beatty sequences, J. Integer Seq., 18(7) (2015), 12 p.
  • Khinchin, A. Y., Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24(4) (1926), 706–714. http://doi.org/10.1007/BF01216806
  • Koksma, J. F., Some Theorems on Diophantine Inequalities, Scriptum no. 5, Math. Centrmn Amsterdam, 1950.
  • Li, H., Pan, H., Primes of the form ⌊αp + β⌋, J. Number Theory, 129(10) (2009), 2328–2334.
  • Mirsky, L., The number of representations of an integer as the sum of a prime and a k-free integer, Amer. Math. Monthly, 56 (1949), 17–19. http://doi.org/10.1080/00029890.1949.11990233
  • Roth, K. F., Rational approximations to algebraic numbers, Mathematika, 2 (1955), 1–20. http://doi.org/10.1112/S0025579300000644
  • Roth, K. F., Corrigendum to “Rational approximations to algebraic numbers”, Mathematika, 2 (1955), 168.
  • Montgomery, H. L., Vaughan, R. C., Multiplicative Number Theory I. Classical Theory, Cambridge University Press, Cambridge, 2007.
  • Vaughan, R. C., The general Goldbach problem with Beatty primes, Ramanujan J., 34(3) (2014), 347–359. http://doi.org/10.1007/s11139-013-9501-3
  • Vaughan, R. C., The Hardy-Littlewood Method, 2nd ed., Cambridge Univ. Press, 1997.
  • Vinogradov, I. M. The Method of Trigonometrical Sums in the Theory of Numbers, Dover Publications, Inc., Mineola, NY, 2004.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Şermin Çam Çelik 0000-0002-0110-7139

Project Number 119F425
Publication Date March 30, 2022
Submission Date May 28, 2021
Acceptance Date August 13, 2021
Published in Issue Year 2022 Volume: 71 Issue: 1

Cite

APA Çam Çelik, Ş. (2022). k-Free numbers and integer parts of αp. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 237-251. https://doi.org/10.31801/cfsuasmas.943912
AMA Çam Çelik Ş. k-Free numbers and integer parts of αp. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2022;71(1):237-251. doi:10.31801/cfsuasmas.943912
Chicago Çam Çelik, Şermin. “K-Free Numbers and Integer Parts of αp”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 1 (March 2022): 237-51. https://doi.org/10.31801/cfsuasmas.943912.
EndNote Çam Çelik Ş (March 1, 2022) k-Free numbers and integer parts of αp. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 1 237–251.
IEEE Ş. Çam Çelik, “k-Free numbers and integer parts of αp”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 1, pp. 237–251, 2022, doi: 10.31801/cfsuasmas.943912.
ISNAD Çam Çelik, Şermin. “K-Free Numbers and Integer Parts of αp”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/1 (March 2022), 237-251. https://doi.org/10.31801/cfsuasmas.943912.
JAMA Çam Çelik Ş. k-Free numbers and integer parts of αp. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:237–251.
MLA Çam Çelik, Şermin. “K-Free Numbers and Integer Parts of αp”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 1, 2022, pp. 237-51, doi:10.31801/cfsuasmas.943912.
Vancouver Çam Çelik Ş. k-Free numbers and integer parts of αp. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(1):237-51.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.