Research Article
BibTex RIS Cite
Year 2023, Volume: 72 Issue: 1, 229 - 239, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1126635

Abstract

References

  • Alligood, K. T., Sauer, T. D., and Yorke, J. A., CHAOS: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1996.
  • Aslan, N., Saltan, M., and Demir, B., A different construction of the classical fractals via the escape time algorithm, Journal of Abstract and Computational Mathematics, 3(4) (2018), 1–15.
  • Aslan, N., Saltan, M., and Demir, B., The intrinsic metric formula and a chaotic dynamical system on the code set of the Sierpinski tetrahedron, Chaos, Solitons and Fractals, 123 (2019), 422-428. Doi:10.1016/j.chaos.2019.04.018.
  • Barnsley, M., Fractals Everywhere, 2nd ed. Academic Press, San Diego, 1988.
  • Cristea, L. L., Steinsky B., Distances in Sierpinski graphs and on the Sierpinski gasket, Aequationes mathematicae, 85 (2013), 201-219. Doi: 10.1007/s00010-013-0197-7.
  • Devaney, R. L., An introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, 1989.
  • Devaney, R. L., Look D. M., Symbolic dynamics for a Sierpinski curve Julia set, J. Differ. Equ. Appl., 11(7) (2005), 581-596. Doi: 10.1080/10236190412331334473.
  • Ercai, C., Chaos for the Sierpinski carpet, J. Stat. Phys., 88 (1997), 979-984.
  • Gu, J., Ye, Q., and Xi, L., Geodesics of higher dimensional Sierpinski gasket, Fractals, 27(4) (2019), 1950049. Doi: 10.1142/S0218348X1950049X.
  • Gulick, D., Encounters with Chaos and Fractals , Boston: Academic Press, 1988.
  • Hirsch, M. W., Smale, S. and Devaney R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier Academic Press, 2013.
  • Ozdemir, Y., Saltan, M. and Demir, B., The intrinsic metric on the box fractal, Bull. Iranian Math. Soc., 45(5) (2018), 1269-1281. Doi: 10.1007/s41980-018-00197-w.
  • Peitgen, H. O., Jürgens, H. and Saupe, D., Chaos and Fractals, New Frontiers of Science, 2nd ed. Springer-Verlag, 2004.
  • Saltan, M., Özdemir, Y., and Demir, B., Geodesic of the Sierpinski gasket, Fractals, 26(3) (2018), 1850024. Doi: 10.1142/S0218348X1850024X.
  • Saltan, M., Özdemir, Y. and Demir, B., An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation, Turkish J. Math., 42 (2018), 716-725. Doi:10.3906/mat-1702-55.
  • Saltan, M., Intrinsic metrics on Sierpinski-like triangles and their geometric properties, Symmetry, 10(6) (2018), 204. Doi: 10.3390/sym10060204.
  • Saltan, M., Aslan, N. and Demir, B., A discrete chaotic dynamical system on the Sierpinski gasket, Turkish J. Math., 43 (2019), 361-372. Doi: 10.3906/mat-1803-77.

Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron

Year 2023, Volume: 72 Issue: 1, 229 - 239, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1126635

Abstract

In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.

References

  • Alligood, K. T., Sauer, T. D., and Yorke, J. A., CHAOS: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1996.
  • Aslan, N., Saltan, M., and Demir, B., A different construction of the classical fractals via the escape time algorithm, Journal of Abstract and Computational Mathematics, 3(4) (2018), 1–15.
  • Aslan, N., Saltan, M., and Demir, B., The intrinsic metric formula and a chaotic dynamical system on the code set of the Sierpinski tetrahedron, Chaos, Solitons and Fractals, 123 (2019), 422-428. Doi:10.1016/j.chaos.2019.04.018.
  • Barnsley, M., Fractals Everywhere, 2nd ed. Academic Press, San Diego, 1988.
  • Cristea, L. L., Steinsky B., Distances in Sierpinski graphs and on the Sierpinski gasket, Aequationes mathematicae, 85 (2013), 201-219. Doi: 10.1007/s00010-013-0197-7.
  • Devaney, R. L., An introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, 1989.
  • Devaney, R. L., Look D. M., Symbolic dynamics for a Sierpinski curve Julia set, J. Differ. Equ. Appl., 11(7) (2005), 581-596. Doi: 10.1080/10236190412331334473.
  • Ercai, C., Chaos for the Sierpinski carpet, J. Stat. Phys., 88 (1997), 979-984.
  • Gu, J., Ye, Q., and Xi, L., Geodesics of higher dimensional Sierpinski gasket, Fractals, 27(4) (2019), 1950049. Doi: 10.1142/S0218348X1950049X.
  • Gulick, D., Encounters with Chaos and Fractals , Boston: Academic Press, 1988.
  • Hirsch, M. W., Smale, S. and Devaney R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier Academic Press, 2013.
  • Ozdemir, Y., Saltan, M. and Demir, B., The intrinsic metric on the box fractal, Bull. Iranian Math. Soc., 45(5) (2018), 1269-1281. Doi: 10.1007/s41980-018-00197-w.
  • Peitgen, H. O., Jürgens, H. and Saupe, D., Chaos and Fractals, New Frontiers of Science, 2nd ed. Springer-Verlag, 2004.
  • Saltan, M., Özdemir, Y., and Demir, B., Geodesic of the Sierpinski gasket, Fractals, 26(3) (2018), 1850024. Doi: 10.1142/S0218348X1850024X.
  • Saltan, M., Özdemir, Y. and Demir, B., An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation, Turkish J. Math., 42 (2018), 716-725. Doi:10.3906/mat-1702-55.
  • Saltan, M., Intrinsic metrics on Sierpinski-like triangles and their geometric properties, Symmetry, 10(6) (2018), 204. Doi: 10.3390/sym10060204.
  • Saltan, M., Aslan, N. and Demir, B., A discrete chaotic dynamical system on the Sierpinski gasket, Turkish J. Math., 43 (2019), 361-372. Doi: 10.3906/mat-1803-77.
There are 17 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Nisa Aslan 0000-0002-2103-0511

Mustafa Saltan 0000-0002-3252-3012

Bünyamin Demir 0000-0002-2560-8392

Publication Date March 30, 2023
Submission Date June 6, 2022
Acceptance Date September 22, 2022
Published in Issue Year 2023 Volume: 72 Issue: 1

Cite

APA Aslan, N., Saltan, M., & Demir, B. (2023). Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 229-239. https://doi.org/10.31801/cfsuasmas.1126635
AMA Aslan N, Saltan M, Demir B. Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):229-239. doi:10.31801/cfsuasmas.1126635
Chicago Aslan, Nisa, Mustafa Saltan, and Bünyamin Demir. “Comparison of Some Dynamical Systems on the Quotient Space of the Sierpinski Tetrahedron”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 229-39. https://doi.org/10.31801/cfsuasmas.1126635.
EndNote Aslan N, Saltan M, Demir B (March 1, 2023) Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 229–239.
IEEE N. Aslan, M. Saltan, and B. Demir, “Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 229–239, 2023, doi: 10.31801/cfsuasmas.1126635.
ISNAD Aslan, Nisa et al. “Comparison of Some Dynamical Systems on the Quotient Space of the Sierpinski Tetrahedron”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 229-239. https://doi.org/10.31801/cfsuasmas.1126635.
JAMA Aslan N, Saltan M, Demir B. Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:229–239.
MLA Aslan, Nisa et al. “Comparison of Some Dynamical Systems on the Quotient Space of the Sierpinski Tetrahedron”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 229-3, doi:10.31801/cfsuasmas.1126635.
Vancouver Aslan N, Saltan M, Demir B. Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):229-3.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.