Research Article
BibTex RIS Cite
Year 2023, Volume: 72 Issue: 1, 240 - 246, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1142926

Abstract

References

  • Koshy T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York: Wiley 2001.
  • Yazlik Y., Taskara N., A note on generalized k-Horadam sequence, Computers and Mathematics with Applications, 63(1) (2012), 36-41. https://doi.org/10.1016/j.camwa.2011.10.055
  • Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32 (2007), 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
  • Horadam A.F., Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3 (1965), 161-176.
  • Catarino P., Borges A., On Leonardo numbers, Acta Mathematica Universitatis Comenianae, 89(1) (2020) 75-86.
  • Edson M., Yayenie O., A new generalization of Fibonacci sequences and extended Binet’s formula, Integers, 9 (2009), 639–654. https://doi.org/10.1515/INTEG.2009.051
  • Yayenie O., A note on generalized Fibonacci sequences, Applied Mathematics and Computation, 217 (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
  • Kilic E., Tan E., More general identities involving the terms of W (a, b; p, q), Ars Combinatoria, 93 (2009), 459-461.
  • Kürüz F., Dağdeviren A. and Catarino P., On Leonardo Pisano hybrinomials, Mathematics, 9(22) (2021), 2923. https://doi.org/10.3390/math9222923.
  • Mersin E. Ö., Bahşi M., Hyper-Leonardo numbers, Conference Proceedings of Science and Technology, 5(1) (2022), 14-20.
  • Mersin E. Ö., Hyper-Leonardo Polynomials, 9th International Congress on Fundamental and Applied Sciences 2022 (ICFAS2022) Proceeding Book, icfas2022.intsa.org, ISBN 978-605-67052-7-4.
  • Szynal-Liana A., Wloch I., The Fibonacci hybrid numbers, Utilitas Mathematica, 110, 3–10, (2019).
  • Szynal-Liana A., The Horadam hybrid numbers, Discussiones Mathematicae General Algebra and Applications, 38 (2018), 91-98. https://doi.org/10.7151/dmgaa.1287
  • Szynal-Liana A., Wloch I., On Jacopsthal and Jacopsthal-Lucas hybrid numbers, Annales Mathematicae Silesianae, 33 (2019), 276-283. https://doi.org/10.2478/amsil-2018-0009
  • Öztürk İ., Özdemir M., Similarity of hybrid numbers, Mathematical Methods in the Applied Science, 43 (2020), 8867-8881 https://doi.org/10.1002/mma.6580
  • Yağmur T., A note on generalized hybrid tribonacci numbers, Discussiones Mathematicae General Algebra and Applications, 40(2) (2020), 187-199. https://doi.org/10.7151/dmgaa.1343
  • Ferson S., Ginzburg L., Hybrid arithmetic, Proceeding of 3rd International symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, (1995), 619-623. https://doi.org/10.1109/ISUMA.1995.527766
  • Alp Y., Koçer G. E., Hybrid Leonardo numbers, Chaos, Solitons and Fractals, 150 (2021). https://doi.org/10.1016/j.chaos.2021.111128
  • Özdemir M., Introduction to hybrid numbers, Advances in Applied Clifford Algebras, 28(11) (2018). https://doi.org/10.1007/s00006-018-0833-3

Hybrinomials related to hyper-Leonardo numbers

Year 2023, Volume: 72 Issue: 1, 240 - 246, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1142926

Abstract

In this paper, we define hybrinomials related to hyper-Leonardo numbers. We study some of their properties such as the recurrence relation and summation formulas. In addition, we introduce hybrid hyper Leonardo numbers.

References

  • Koshy T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York: Wiley 2001.
  • Yazlik Y., Taskara N., A note on generalized k-Horadam sequence, Computers and Mathematics with Applications, 63(1) (2012), 36-41. https://doi.org/10.1016/j.camwa.2011.10.055
  • Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32 (2007), 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
  • Horadam A.F., Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3 (1965), 161-176.
  • Catarino P., Borges A., On Leonardo numbers, Acta Mathematica Universitatis Comenianae, 89(1) (2020) 75-86.
  • Edson M., Yayenie O., A new generalization of Fibonacci sequences and extended Binet’s formula, Integers, 9 (2009), 639–654. https://doi.org/10.1515/INTEG.2009.051
  • Yayenie O., A note on generalized Fibonacci sequences, Applied Mathematics and Computation, 217 (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
  • Kilic E., Tan E., More general identities involving the terms of W (a, b; p, q), Ars Combinatoria, 93 (2009), 459-461.
  • Kürüz F., Dağdeviren A. and Catarino P., On Leonardo Pisano hybrinomials, Mathematics, 9(22) (2021), 2923. https://doi.org/10.3390/math9222923.
  • Mersin E. Ö., Bahşi M., Hyper-Leonardo numbers, Conference Proceedings of Science and Technology, 5(1) (2022), 14-20.
  • Mersin E. Ö., Hyper-Leonardo Polynomials, 9th International Congress on Fundamental and Applied Sciences 2022 (ICFAS2022) Proceeding Book, icfas2022.intsa.org, ISBN 978-605-67052-7-4.
  • Szynal-Liana A., Wloch I., The Fibonacci hybrid numbers, Utilitas Mathematica, 110, 3–10, (2019).
  • Szynal-Liana A., The Horadam hybrid numbers, Discussiones Mathematicae General Algebra and Applications, 38 (2018), 91-98. https://doi.org/10.7151/dmgaa.1287
  • Szynal-Liana A., Wloch I., On Jacopsthal and Jacopsthal-Lucas hybrid numbers, Annales Mathematicae Silesianae, 33 (2019), 276-283. https://doi.org/10.2478/amsil-2018-0009
  • Öztürk İ., Özdemir M., Similarity of hybrid numbers, Mathematical Methods in the Applied Science, 43 (2020), 8867-8881 https://doi.org/10.1002/mma.6580
  • Yağmur T., A note on generalized hybrid tribonacci numbers, Discussiones Mathematicae General Algebra and Applications, 40(2) (2020), 187-199. https://doi.org/10.7151/dmgaa.1343
  • Ferson S., Ginzburg L., Hybrid arithmetic, Proceeding of 3rd International symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, (1995), 619-623. https://doi.org/10.1109/ISUMA.1995.527766
  • Alp Y., Koçer G. E., Hybrid Leonardo numbers, Chaos, Solitons and Fractals, 150 (2021). https://doi.org/10.1016/j.chaos.2021.111128
  • Özdemir M., Introduction to hybrid numbers, Advances in Applied Clifford Algebras, 28(11) (2018). https://doi.org/10.1007/s00006-018-0833-3
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Efruz Özlem Mersin 0000-0001-6260-9063

Mustafa Bahşi 0000-0002-6356-6592

Publication Date March 30, 2023
Submission Date July 10, 2022
Acceptance Date September 7, 2022
Published in Issue Year 2023 Volume: 72 Issue: 1

Cite

APA Mersin, E. Ö., & Bahşi, M. (2023). Hybrinomials related to hyper-Leonardo numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 240-246. https://doi.org/10.31801/cfsuasmas.1142926
AMA Mersin EÖ, Bahşi M. Hybrinomials related to hyper-Leonardo numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):240-246. doi:10.31801/cfsuasmas.1142926
Chicago Mersin, Efruz Özlem, and Mustafa Bahşi. “Hybrinomials Related to Hyper-Leonardo Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 240-46. https://doi.org/10.31801/cfsuasmas.1142926.
EndNote Mersin EÖ, Bahşi M (March 1, 2023) Hybrinomials related to hyper-Leonardo numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 240–246.
IEEE E. Ö. Mersin and M. Bahşi, “Hybrinomials related to hyper-Leonardo numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 240–246, 2023, doi: 10.31801/cfsuasmas.1142926.
ISNAD Mersin, Efruz Özlem - Bahşi, Mustafa. “Hybrinomials Related to Hyper-Leonardo Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 240-246. https://doi.org/10.31801/cfsuasmas.1142926.
JAMA Mersin EÖ, Bahşi M. Hybrinomials related to hyper-Leonardo numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:240–246.
MLA Mersin, Efruz Özlem and Mustafa Bahşi. “Hybrinomials Related to Hyper-Leonardo Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 240-6, doi:10.31801/cfsuasmas.1142926.
Vancouver Mersin EÖ, Bahşi M. Hybrinomials related to hyper-Leonardo numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):240-6.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.