Research Article
BibTex RIS Cite
Year 2023, Volume: 72 Issue: 2, 374 - 385, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1108176

Abstract

References

  • Abdullah, M. M., Ali, A. M., Schultz and modified Schultz polynomials for edge-identification chain and ring-for square graphs, Baghdad Sci. J., 19(3) (2022), 560–568.
  • Abdullah, M. M., Ali, A. M., Schultz and modified Schultz polynomials for edge-identification chain and ring for pentagon and hexagon graphs, J. Phys: Conf. Ser. , 1818(1) (2021), 012063.
  • Brandstadt, A., Le, V. B., Spinrad, J. P., Graph Classes: A Survey, SIAM, Monographs on Discrete Mathematics and Applications, Philadelphia, 1999. http://dx.doi.org/10.1137/1.9780898719796
  • Eliasi, M., Taeri, B., Schultz polynomials of composite graphs, Appl. Anal. Discrete Math., 2 (2008), 285–296. doi:10.2298/AADM0802285E
  • Eu, S. P., Yang, B. Y., Yeh, Y. N., Theoretical and computational developments generalized Wiener indices in hexagonal chains, Int. J. Quantum Chem., 106(2) (2006), 426–435.
  • Jensen, T. R., Toft, B., Graph Colouring Problems, John Wiley & Sons, New York, 1995.
  • Kubale, M., Graph Colourings, American Math. Soc., Rhode Island, 2004.
  • Kok, J., Sudev, N. K., Mary, U., On chromatic Zagreb indices of certain graphs, Discrete Math. Algorithm. Appl., 9(1) (2017), 1–11. DOI:10.1142/S1793830917500148.
  • Rose S., David, I., Naduvath, S., On chromatic D-polynomial of graphs, Contemp. Stud. Discrete Math., 2(1) (2018), 31–43.
  • West, D. B., Introduction to Graph Theory, Pearson Education, Delhi, 2001.

Chromatic Schultz polynomial of certain graphs

Year 2023, Volume: 72 Issue: 2, 374 - 385, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1108176

Abstract

A topological index of a graph $G$ is a real number which is preserved under isomorphism. Extensive studies on certain polynomials related to these topological indices have also been done recently. In a similar way, chromatic versions of certain topological indices and the related polynomials have also been discussed in the recent literature. In this paper, the chromatic versions of the Schultz polynomial and modified chromatic Schultz polynomial are introduced and determined this polynomial for certain fundamental graph classes.

Thanks

The author of this article would like to dedicate this article to Dr Johan Kok, Visiting Professor, Christ University, Bangalore, who is a friend, collaborator and motivator, as a tribute to his untiring efforts in the field of Mathematics research.

References

  • Abdullah, M. M., Ali, A. M., Schultz and modified Schultz polynomials for edge-identification chain and ring-for square graphs, Baghdad Sci. J., 19(3) (2022), 560–568.
  • Abdullah, M. M., Ali, A. M., Schultz and modified Schultz polynomials for edge-identification chain and ring for pentagon and hexagon graphs, J. Phys: Conf. Ser. , 1818(1) (2021), 012063.
  • Brandstadt, A., Le, V. B., Spinrad, J. P., Graph Classes: A Survey, SIAM, Monographs on Discrete Mathematics and Applications, Philadelphia, 1999. http://dx.doi.org/10.1137/1.9780898719796
  • Eliasi, M., Taeri, B., Schultz polynomials of composite graphs, Appl. Anal. Discrete Math., 2 (2008), 285–296. doi:10.2298/AADM0802285E
  • Eu, S. P., Yang, B. Y., Yeh, Y. N., Theoretical and computational developments generalized Wiener indices in hexagonal chains, Int. J. Quantum Chem., 106(2) (2006), 426–435.
  • Jensen, T. R., Toft, B., Graph Colouring Problems, John Wiley & Sons, New York, 1995.
  • Kubale, M., Graph Colourings, American Math. Soc., Rhode Island, 2004.
  • Kok, J., Sudev, N. K., Mary, U., On chromatic Zagreb indices of certain graphs, Discrete Math. Algorithm. Appl., 9(1) (2017), 1–11. DOI:10.1142/S1793830917500148.
  • Rose S., David, I., Naduvath, S., On chromatic D-polynomial of graphs, Contemp. Stud. Discrete Math., 2(1) (2018), 31–43.
  • West, D. B., Introduction to Graph Theory, Pearson Education, Delhi, 2001.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Sudev Naduvath 0000-0001-9692-4053

Publication Date June 23, 2023
Submission Date April 24, 2022
Acceptance Date November 29, 2022
Published in Issue Year 2023 Volume: 72 Issue: 2

Cite

APA Naduvath, S. (2023). Chromatic Schultz polynomial of certain graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(2), 374-385. https://doi.org/10.31801/cfsuasmas.1108176
AMA Naduvath S. Chromatic Schultz polynomial of certain graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2023;72(2):374-385. doi:10.31801/cfsuasmas.1108176
Chicago Naduvath, Sudev. “Chromatic Schultz Polynomial of Certain Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 2 (June 2023): 374-85. https://doi.org/10.31801/cfsuasmas.1108176.
EndNote Naduvath S (June 1, 2023) Chromatic Schultz polynomial of certain graphs. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 2 374–385.
IEEE S. Naduvath, “Chromatic Schultz polynomial of certain graphs”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 2, pp. 374–385, 2023, doi: 10.31801/cfsuasmas.1108176.
ISNAD Naduvath, Sudev. “Chromatic Schultz Polynomial of Certain Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/2 (June 2023), 374-385. https://doi.org/10.31801/cfsuasmas.1108176.
JAMA Naduvath S. Chromatic Schultz polynomial of certain graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:374–385.
MLA Naduvath, Sudev. “Chromatic Schultz Polynomial of Certain Graphs”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 2, 2023, pp. 374-85, doi:10.31801/cfsuasmas.1108176.
Vancouver Naduvath S. Chromatic Schultz polynomial of certain graphs. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(2):374-85.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.