Research Article
BibTex RIS Cite
Year 2023, Volume: 72 Issue: 2, 438 - 448, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1124351

Abstract

References

  • Aizpuru, A., Listan-Garcia, M. C., Rambla-Barreno F., Density by moduli and statistical convergence, Quaestiones Mathematicae, 37 (2014), 525-530. https://doi.org/10.2989/16073606.2014.981683
  • Arif, A., Yurdakadim, T., Approximation results on nonlinear operators by $P_p$-statistical convergence, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15(3) (2022), 1-10. DOI:10.32513/asetmj/19322008220
  • Bayram, N. Ş., Criteria for statistical convergence with respect to power series methods, Positivity. 25, (2021), 1097-1105. https://doi.org/10.1007/s11117-020-00801-6
  • Bayram, N. Ş., Yıldız, S., Approximation by statistical convergence with respect to power series methods, Hacet. J. Math. Stat., 51(4) (2022), 1108-1120. DOI: 10.15672/hujms.1022072
  • Bayram, N. Ş., P-strong convergence with respect to an Orlicz function, Turk J Math., 46 (2022), 832-838. https://doi.org/10.55730/1300-0098.3126
  • Belen, C., Yıldırım, M., Sümbül, C., On statistical and strong convergence with respect to a modulus function and a power series method, Filomat, 34(12) (2020), 3981-3993. https://doi.org/10.2298/FIL2012981B
  • Boos, J., Classical and modern methods in summability, Oxford University Press, Oxford, 2000.
  • Demirci, K., Dirik, F., Yıldız, S., Approximation via equi-statistical convergence in the sense of power series method, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. R, 116(65) (2022). https://doi.org/10.1007/s13398-021-01191-4
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • Freedman, A. R., Sember, J. J., Densities and summability, Pacific J. Math., 95(2) (1981), 293-305.
  • Fridy, J. A., On statistical convergence, Analysis 5 (1985), 301-313.
  • Fridy, J.A., Statistical limit points, Proc. Amer. Math. Soc., 118(8) (1993), 1187-1193.
  • Listan-Garcia, M. C., f-statistical convergence, completeness and f-cluster points, Bull. Belg. Math. Soc. Simon Stevin, 23(2) (2016), 235-245.
  • Nakano, H., Concave modulars, J. Math. Soc. Japan, 5 (1953), 29-49.
  • Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
  • Söylemez, D., A Korovkin type approximation theorem for Bal´azs Type Bleimann, Butzer and Hahn Operators via power series statistical convergence, Math. Slovaca, 72(1) (2022), 153-164. https://doi.org/10.1515/ms-2022-0011
  • Sümbül, C., Belen, C., Yıldırım, M., Properties of $J_p$-statistical convergence, Cumhuriyet Sci. J., 43(2) (2022), 294-298. https://doi.org/10.17776/csj.1064559
  • Ünver, M., Orhan, C., Statistical convergence with respect to power series methods and applications to approximation theory, Numer. Func. Anal Opt., 40(5) (2019), 535-547. https://doi.org/10.1080/01630563.2018.1561467
  • Ünver, M., Bayram, N. Ş., On statistical convergence with respect to power series methods, Positivity (2022), 26-55. https://doi.org/10.1007/s11117-022-00921-1

On statistical limit points with respect to power series methods and modulus functions

Year 2023, Volume: 72 Issue: 2, 438 - 448, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1124351

Abstract

In this study, we define a new type of statistical limit point using the notions of statistical convergence with respect to the $J_p$ power series method and then we present some examples to show the relations between these points and ordinary limit points. After that we also study statistical limit points of a sequence with the help of a modulus function in the sense of the $J_p$ power series method. Namely, we define $f-J_p$-statistical limit and cluster points of the real sequences and compare the set of these limit points with the set of ordinary points.

References

  • Aizpuru, A., Listan-Garcia, M. C., Rambla-Barreno F., Density by moduli and statistical convergence, Quaestiones Mathematicae, 37 (2014), 525-530. https://doi.org/10.2989/16073606.2014.981683
  • Arif, A., Yurdakadim, T., Approximation results on nonlinear operators by $P_p$-statistical convergence, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15(3) (2022), 1-10. DOI:10.32513/asetmj/19322008220
  • Bayram, N. Ş., Criteria for statistical convergence with respect to power series methods, Positivity. 25, (2021), 1097-1105. https://doi.org/10.1007/s11117-020-00801-6
  • Bayram, N. Ş., Yıldız, S., Approximation by statistical convergence with respect to power series methods, Hacet. J. Math. Stat., 51(4) (2022), 1108-1120. DOI: 10.15672/hujms.1022072
  • Bayram, N. Ş., P-strong convergence with respect to an Orlicz function, Turk J Math., 46 (2022), 832-838. https://doi.org/10.55730/1300-0098.3126
  • Belen, C., Yıldırım, M., Sümbül, C., On statistical and strong convergence with respect to a modulus function and a power series method, Filomat, 34(12) (2020), 3981-3993. https://doi.org/10.2298/FIL2012981B
  • Boos, J., Classical and modern methods in summability, Oxford University Press, Oxford, 2000.
  • Demirci, K., Dirik, F., Yıldız, S., Approximation via equi-statistical convergence in the sense of power series method, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. R, 116(65) (2022). https://doi.org/10.1007/s13398-021-01191-4
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
  • Freedman, A. R., Sember, J. J., Densities and summability, Pacific J. Math., 95(2) (1981), 293-305.
  • Fridy, J. A., On statistical convergence, Analysis 5 (1985), 301-313.
  • Fridy, J.A., Statistical limit points, Proc. Amer. Math. Soc., 118(8) (1993), 1187-1193.
  • Listan-Garcia, M. C., f-statistical convergence, completeness and f-cluster points, Bull. Belg. Math. Soc. Simon Stevin, 23(2) (2016), 235-245.
  • Nakano, H., Concave modulars, J. Math. Soc. Japan, 5 (1953), 29-49.
  • Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
  • Söylemez, D., A Korovkin type approximation theorem for Bal´azs Type Bleimann, Butzer and Hahn Operators via power series statistical convergence, Math. Slovaca, 72(1) (2022), 153-164. https://doi.org/10.1515/ms-2022-0011
  • Sümbül, C., Belen, C., Yıldırım, M., Properties of $J_p$-statistical convergence, Cumhuriyet Sci. J., 43(2) (2022), 294-298. https://doi.org/10.17776/csj.1064559
  • Ünver, M., Orhan, C., Statistical convergence with respect to power series methods and applications to approximation theory, Numer. Func. Anal Opt., 40(5) (2019), 535-547. https://doi.org/10.1080/01630563.2018.1561467
  • Ünver, M., Bayram, N. Ş., On statistical convergence with respect to power series methods, Positivity (2022), 26-55. https://doi.org/10.1007/s11117-022-00921-1
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Canan Sümbül 0000-0002-8905-1247

Cemal Belen 0000-0002-8832-1524

Mustafa Yıldırım 0000-0002-8880-5457

Publication Date June 23, 2023
Submission Date June 1, 2022
Acceptance Date November 22, 2022
Published in Issue Year 2023 Volume: 72 Issue: 2

Cite

APA Sümbül, C., Belen, C., & Yıldırım, M. (2023). On statistical limit points with respect to power series methods and modulus functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(2), 438-448. https://doi.org/10.31801/cfsuasmas.1124351
AMA Sümbül C, Belen C, Yıldırım M. On statistical limit points with respect to power series methods and modulus functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2023;72(2):438-448. doi:10.31801/cfsuasmas.1124351
Chicago Sümbül, Canan, Cemal Belen, and Mustafa Yıldırım. “On Statistical Limit Points With Respect to Power Series Methods and Modulus Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 2 (June 2023): 438-48. https://doi.org/10.31801/cfsuasmas.1124351.
EndNote Sümbül C, Belen C, Yıldırım M (June 1, 2023) On statistical limit points with respect to power series methods and modulus functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 2 438–448.
IEEE C. Sümbül, C. Belen, and M. Yıldırım, “On statistical limit points with respect to power series methods and modulus functions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 2, pp. 438–448, 2023, doi: 10.31801/cfsuasmas.1124351.
ISNAD Sümbül, Canan et al. “On Statistical Limit Points With Respect to Power Series Methods and Modulus Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/2 (June 2023), 438-448. https://doi.org/10.31801/cfsuasmas.1124351.
JAMA Sümbül C, Belen C, Yıldırım M. On statistical limit points with respect to power series methods and modulus functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:438–448.
MLA Sümbül, Canan et al. “On Statistical Limit Points With Respect to Power Series Methods and Modulus Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 2, 2023, pp. 438-4, doi:10.31801/cfsuasmas.1124351.
Vancouver Sümbül C, Belen C, Yıldırım M. On statistical limit points with respect to power series methods and modulus functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(2):438-4.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.