The Fell approach structure
Year 2023,
Volume: 72 Issue: 3, 633 - 649, 30.09.2023
Meryem Ateş
,
Sevda Sağıroğlu Peker
Abstract
In the present paper we construct a new approach structure called Fell approach structure. We define the new structure by means of lower regular function frames and prove that the Top-coreflection of this new structure is the ordinary Fell topology. We also give analogue result for the extended Fell topology and investigate some properties of Fell approach structure.
References
- Beer, G., Kenderov, P. On the arg min multifunction for lower semicontinuous functions, Proc. Amer. Math. Soc., 102 (1988), 107-113. https://doi.org/10.1090/S0002-9939-1988-0915725-3
- Beer, G., Luchetti, R., Convex optimization and epi-distance topology, Trans. Amer. Math. Soc., 327 (1991), 795-813. https://doi.org/10.2307/2001823
- Beer, G., On the Fell topology, Set Valued Analysis, 1 (1993), 69-80. https://doi.org/10.1007/BF01039292
- Beer, G., Topologies on Closed Convex Sets, Kluwer Academic Publishers, 1993. http://dx.doi.org/10.1007/978-94-015-8149-3
- Fell, J., A Hausdorff topology for the closed subsets of locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476. https://doi.org/10.1090/S0002-9939-1962-0139135-6
- Hola, L., Levi, S., Decomposition properties of hyperspace topologies, Set Valued Analysis, Kluwer Academic Publishers (1997). https://doi.org/10.1023/A:1008608209952
- Baran, M., Qasim, M., Local $T_{0}$ approach spaces, Mathematical Sciences and Applications E-Notes, 5(1) (2017), 45-56.
- Baran, M., Qasim, M., $T_{1}$ approach spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1) (2019), 784-800. https://doi.org/10.31801/cfsuasmas.478632
- Bourbaki, N., Theory of Sets, Elements of Mathematics, Springer, Heidelberg, 2004.
- Lowen, R. Kuratowski’s measure of noncompactness revisited, Q.J. Math. Oxford, 39 (1988), 235-254. https://doi.org/10.1093/qmath/39.2.235
- Lowen, R., Sioen, M., The Wijsman and Attouch-Wets topologies on hyperspaces revisited, Topology Appl., 70 (1996), 179-197. https://doi.org/10.1016/0166-8641(95)00096-8
- Lowen, R., Approach Spaces: the Missing Link in the Topology Uniformity Metric Triad, Oxford Mathematical Monographs. Oxford University Press, New York, United States Springer, 1997.
- Lowen, R., Verbeeck, C., Local compactness in approach spaces I, Internat. J. Math. Scie., 21 (1998), 429-438. https://doi.org/10.1155/S0161171203007646
- Lowen, R., Sioen, M., Proximal hypertopologies revisited, Set Valued Analysis, 6 (1998), 1-19. http://dx.doi.org/10.1023/A:1008646106442
- Lowen, R., Sioen, M., A note on seperation in Ap, Applied General Topology, 4 (2003), 475-486. http://dx.doi.org/10.4995/agt.2003.2046
- Lowen, R., Wuyts, P., The Vietoris hyperspace structure for approach spaces, Acta Math. Hungar., 139, (2013), 286–302. http://dx.doi.org/10.1007/s10474-012-0292-6
- Lowen, R. Index Analysis, Approach Theory at Work, Springer, 2015. http://dx.doi.org/10.1007/978-1-4471-6485-2
Year 2023,
Volume: 72 Issue: 3, 633 - 649, 30.09.2023
Meryem Ateş
,
Sevda Sağıroğlu Peker
References
- Beer, G., Kenderov, P. On the arg min multifunction for lower semicontinuous functions, Proc. Amer. Math. Soc., 102 (1988), 107-113. https://doi.org/10.1090/S0002-9939-1988-0915725-3
- Beer, G., Luchetti, R., Convex optimization and epi-distance topology, Trans. Amer. Math. Soc., 327 (1991), 795-813. https://doi.org/10.2307/2001823
- Beer, G., On the Fell topology, Set Valued Analysis, 1 (1993), 69-80. https://doi.org/10.1007/BF01039292
- Beer, G., Topologies on Closed Convex Sets, Kluwer Academic Publishers, 1993. http://dx.doi.org/10.1007/978-94-015-8149-3
- Fell, J., A Hausdorff topology for the closed subsets of locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476. https://doi.org/10.1090/S0002-9939-1962-0139135-6
- Hola, L., Levi, S., Decomposition properties of hyperspace topologies, Set Valued Analysis, Kluwer Academic Publishers (1997). https://doi.org/10.1023/A:1008608209952
- Baran, M., Qasim, M., Local $T_{0}$ approach spaces, Mathematical Sciences and Applications E-Notes, 5(1) (2017), 45-56.
- Baran, M., Qasim, M., $T_{1}$ approach spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1) (2019), 784-800. https://doi.org/10.31801/cfsuasmas.478632
- Bourbaki, N., Theory of Sets, Elements of Mathematics, Springer, Heidelberg, 2004.
- Lowen, R. Kuratowski’s measure of noncompactness revisited, Q.J. Math. Oxford, 39 (1988), 235-254. https://doi.org/10.1093/qmath/39.2.235
- Lowen, R., Sioen, M., The Wijsman and Attouch-Wets topologies on hyperspaces revisited, Topology Appl., 70 (1996), 179-197. https://doi.org/10.1016/0166-8641(95)00096-8
- Lowen, R., Approach Spaces: the Missing Link in the Topology Uniformity Metric Triad, Oxford Mathematical Monographs. Oxford University Press, New York, United States Springer, 1997.
- Lowen, R., Verbeeck, C., Local compactness in approach spaces I, Internat. J. Math. Scie., 21 (1998), 429-438. https://doi.org/10.1155/S0161171203007646
- Lowen, R., Sioen, M., Proximal hypertopologies revisited, Set Valued Analysis, 6 (1998), 1-19. http://dx.doi.org/10.1023/A:1008646106442
- Lowen, R., Sioen, M., A note on seperation in Ap, Applied General Topology, 4 (2003), 475-486. http://dx.doi.org/10.4995/agt.2003.2046
- Lowen, R., Wuyts, P., The Vietoris hyperspace structure for approach spaces, Acta Math. Hungar., 139, (2013), 286–302. http://dx.doi.org/10.1007/s10474-012-0292-6
- Lowen, R. Index Analysis, Approach Theory at Work, Springer, 2015. http://dx.doi.org/10.1007/978-1-4471-6485-2