Research Article
BibTex RIS Cite

The Fell approach structure

Year 2023, Volume: 72 Issue: 3, 633 - 649, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1224326

Abstract

In the present paper we construct a new approach structure called Fell approach structure. We define the new structure by means of lower regular function frames and prove that the Top-coreflection of this new structure is the ordinary Fell topology. We also give analogue result for the extended Fell topology and investigate some properties of Fell approach structure.

References

  • Beer, G., Kenderov, P. On the arg min multifunction for lower semicontinuous functions, Proc. Amer. Math. Soc., 102 (1988), 107-113. https://doi.org/10.1090/S0002-9939-1988-0915725-3
  • Beer, G., Luchetti, R., Convex optimization and epi-distance topology, Trans. Amer. Math. Soc., 327 (1991), 795-813. https://doi.org/10.2307/2001823
  • Beer, G., On the Fell topology, Set Valued Analysis, 1 (1993), 69-80. https://doi.org/10.1007/BF01039292
  • Beer, G., Topologies on Closed Convex Sets, Kluwer Academic Publishers, 1993. http://dx.doi.org/10.1007/978-94-015-8149-3
  • Fell, J., A Hausdorff topology for the closed subsets of locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476. https://doi.org/10.1090/S0002-9939-1962-0139135-6
  • Hola, L., Levi, S., Decomposition properties of hyperspace topologies, Set Valued Analysis, Kluwer Academic Publishers (1997). https://doi.org/10.1023/A:1008608209952
  • Baran, M., Qasim, M., Local $T_{0}$ approach spaces, Mathematical Sciences and Applications E-Notes, 5(1) (2017), 45-56.
  • Baran, M., Qasim, M., $T_{1}$ approach spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1) (2019), 784-800. https://doi.org/10.31801/cfsuasmas.478632
  • Bourbaki, N., Theory of Sets, Elements of Mathematics, Springer, Heidelberg, 2004.
  • Lowen, R. Kuratowski’s measure of noncompactness revisited, Q.J. Math. Oxford, 39 (1988), 235-254. https://doi.org/10.1093/qmath/39.2.235
  • Lowen, R., Sioen, M., The Wijsman and Attouch-Wets topologies on hyperspaces revisited, Topology Appl., 70 (1996), 179-197. https://doi.org/10.1016/0166-8641(95)00096-8
  • Lowen, R., Approach Spaces: the Missing Link in the Topology Uniformity Metric Triad, Oxford Mathematical Monographs. Oxford University Press, New York, United States Springer, 1997.
  • Lowen, R., Verbeeck, C., Local compactness in approach spaces I, Internat. J. Math. Scie., 21 (1998), 429-438. https://doi.org/10.1155/S0161171203007646
  • Lowen, R., Sioen, M., Proximal hypertopologies revisited, Set Valued Analysis, 6 (1998), 1-19. http://dx.doi.org/10.1023/A:1008646106442
  • Lowen, R., Sioen, M., A note on seperation in Ap, Applied General Topology, 4 (2003), 475-486. http://dx.doi.org/10.4995/agt.2003.2046
  • Lowen, R., Wuyts, P., The Vietoris hyperspace structure for approach spaces, Acta Math. Hungar., 139, (2013), 286–302. http://dx.doi.org/10.1007/s10474-012-0292-6
  • Lowen, R. Index Analysis, Approach Theory at Work, Springer, 2015. http://dx.doi.org/10.1007/978-1-4471-6485-2
Year 2023, Volume: 72 Issue: 3, 633 - 649, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1224326

Abstract

References

  • Beer, G., Kenderov, P. On the arg min multifunction for lower semicontinuous functions, Proc. Amer. Math. Soc., 102 (1988), 107-113. https://doi.org/10.1090/S0002-9939-1988-0915725-3
  • Beer, G., Luchetti, R., Convex optimization and epi-distance topology, Trans. Amer. Math. Soc., 327 (1991), 795-813. https://doi.org/10.2307/2001823
  • Beer, G., On the Fell topology, Set Valued Analysis, 1 (1993), 69-80. https://doi.org/10.1007/BF01039292
  • Beer, G., Topologies on Closed Convex Sets, Kluwer Academic Publishers, 1993. http://dx.doi.org/10.1007/978-94-015-8149-3
  • Fell, J., A Hausdorff topology for the closed subsets of locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476. https://doi.org/10.1090/S0002-9939-1962-0139135-6
  • Hola, L., Levi, S., Decomposition properties of hyperspace topologies, Set Valued Analysis, Kluwer Academic Publishers (1997). https://doi.org/10.1023/A:1008608209952
  • Baran, M., Qasim, M., Local $T_{0}$ approach spaces, Mathematical Sciences and Applications E-Notes, 5(1) (2017), 45-56.
  • Baran, M., Qasim, M., $T_{1}$ approach spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1) (2019), 784-800. https://doi.org/10.31801/cfsuasmas.478632
  • Bourbaki, N., Theory of Sets, Elements of Mathematics, Springer, Heidelberg, 2004.
  • Lowen, R. Kuratowski’s measure of noncompactness revisited, Q.J. Math. Oxford, 39 (1988), 235-254. https://doi.org/10.1093/qmath/39.2.235
  • Lowen, R., Sioen, M., The Wijsman and Attouch-Wets topologies on hyperspaces revisited, Topology Appl., 70 (1996), 179-197. https://doi.org/10.1016/0166-8641(95)00096-8
  • Lowen, R., Approach Spaces: the Missing Link in the Topology Uniformity Metric Triad, Oxford Mathematical Monographs. Oxford University Press, New York, United States Springer, 1997.
  • Lowen, R., Verbeeck, C., Local compactness in approach spaces I, Internat. J. Math. Scie., 21 (1998), 429-438. https://doi.org/10.1155/S0161171203007646
  • Lowen, R., Sioen, M., Proximal hypertopologies revisited, Set Valued Analysis, 6 (1998), 1-19. http://dx.doi.org/10.1023/A:1008646106442
  • Lowen, R., Sioen, M., A note on seperation in Ap, Applied General Topology, 4 (2003), 475-486. http://dx.doi.org/10.4995/agt.2003.2046
  • Lowen, R., Wuyts, P., The Vietoris hyperspace structure for approach spaces, Acta Math. Hungar., 139, (2013), 286–302. http://dx.doi.org/10.1007/s10474-012-0292-6
  • Lowen, R. Index Analysis, Approach Theory at Work, Springer, 2015. http://dx.doi.org/10.1007/978-1-4471-6485-2
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Meryem Ateş 0000-0003-2393-0828

Sevda Sağıroğlu Peker 0000-0003-3084-0839

Publication Date September 30, 2023
Submission Date December 26, 2022
Acceptance Date March 28, 2023
Published in Issue Year 2023 Volume: 72 Issue: 3

Cite

APA Ateş, M., & Sağıroğlu Peker, S. (2023). The Fell approach structure. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 633-649. https://doi.org/10.31801/cfsuasmas.1224326
AMA Ateş M, Sağıroğlu Peker S. The Fell approach structure. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2023;72(3):633-649. doi:10.31801/cfsuasmas.1224326
Chicago Ateş, Meryem, and Sevda Sağıroğlu Peker. “The Fell Approach Structure”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 3 (September 2023): 633-49. https://doi.org/10.31801/cfsuasmas.1224326.
EndNote Ateş M, Sağıroğlu Peker S (September 1, 2023) The Fell approach structure. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 633–649.
IEEE M. Ateş and S. Sağıroğlu Peker, “The Fell approach structure”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 3, pp. 633–649, 2023, doi: 10.31801/cfsuasmas.1224326.
ISNAD Ateş, Meryem - Sağıroğlu Peker, Sevda. “The Fell Approach Structure”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (September 2023), 633-649. https://doi.org/10.31801/cfsuasmas.1224326.
JAMA Ateş M, Sağıroğlu Peker S. The Fell approach structure. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:633–649.
MLA Ateş, Meryem and Sevda Sağıroğlu Peker. “The Fell Approach Structure”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 3, 2023, pp. 633-49, doi:10.31801/cfsuasmas.1224326.
Vancouver Ateş M, Sağıroğlu Peker S. The Fell approach structure. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):633-49.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.