Araştırma Makalesi
BibTex RIS Kaynak Göster

New proofs of Fejer's and discrete Hermite-Hadamard inequalities with applications

Yıl 2023, Cilt: 72 Sayı: 4, 1110 - 1125, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1262668

Öz

New proofs of the classical Fejer inequality and discrete Hermite-Hadamard inequality (HH) are presented and several applications are given, including (HH)-type inequalities for the functions, whose derivatives have inflection points. Morever, some estimates from below and above for the first moments of functions $f:[a,b]\rightarrow \mathbb{R}$ about the midpoint $c=(a+b)/2$ are obtained and the reverse Hardy inequality for convex functions $f:(0,\infty )\rightarrow (0,\infty )$ is established.

Kaynakça

  • Amrahov, S. E., A note on Hadamard inequalities for the product of the convex functions, International J. of Research and Reviews in Applied Sciences, 5(2) (2010), 168-170.
  • Alomari, M., Darus, M. and Dragomir, S. S., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math., 41(4) (2010), 353-359.
  • Azpetia, A. G., Convex functions and the Hadamard inequality, Revista Colombiana Mat., 28 (1994), 7-12.
  • Bakula, M. K., Özdemir, M. E. and Pecaric, J., Hadamard-type inequalities for m-convex and $(\alpha,m)$-convex functions. J. Ineq. Pure Appl. Math., 9(4) (2008), Article 96.
  • Chen, F., Liu, X., On Hermite-Hadamard type inequalities for functions whose second derivatives absolute values are s-convex, ISRN Applied Mathematics, (2014), 1-4, DOI:10.1155/2014/829158.
  • Dragomir, S. S., Pearce, C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • Dragomir, S. S., On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 3(1) (2002).
  • El Farissi, A., Simple proof and refinement of Hermite-Hadamard inequality. J. Math. Inequal, 4(3) (2010), 365-369.
  • Fink, A. M., A best possible Hadamard inequality, Math. Inequal Appl., 1 (1998), 223-230.
  • Florea, A., Niculescu, C. P., A Hermite-Hadamard inequality for convex-concave symmetric functions, Bull. Soc. Sci. Math. Roum., 50(98) No:2 (2007), 149-156.
  • Hwang, D. Y., Tseng, K. L. and Yang, G. S., Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11(1) (2007), 63-73, DOI:10.11650/twjm/1500404635.
  • Ion, D. A., On an inequality due to Amrahov, Annals of University of Craiova, Math. Comp. Sci. Ser., 38(1) (2011), 92-95, DOI 10.52846/ami.v38i1.396.
  • Kemali, S., Yesilce, I., Adilov, G., B-Convexity, B-1-Convexity and Their Comparison, Numerical Functional Analysis and Optimization, 36(2) (2015), 133-146,. DOI:10.1080/01630563.2014.970641.
  • Kemali, S., Sezer, S., Tınaztepe, G., Adilov, G., s-Convex functions in the third sense, Korean Journal of Mathematics, 29(3) (2021), 593-602, DOI 10.11568/kjm.2021.29.3.593.
  • Mercer, A. M. D., A variant of Jensen’s inequality, J. Ineq. Pure and Appl. Math., 4(4) (2003), Article 73.
  • Mitrinovic, D. S., Pecaric, J. E. and Fink, A. M., Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
  • Niculescu C. P., Persson, L. E., Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange, 29 (2003/2004), 663-686.
  • Niculescu C. P., Persson, L. E., Convex Functions and Their Applications, A Contemporary Approach, CMS Books in Mathematics, V.23, Springer-Verlag, 2006.
  • Sarikaya, M. Z., Saglam, A. and Yildirim, H., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex or quasi-convex, International J. of Open Problems in Comp. Sci. and Math., 5(3) (2012), 1-14.
  • Sezer, S., Eken, Z., Tınaztepe, G., Adilov, G., p-Convex functions and some of their properties,Numerical Functional Analysis and Optimization, 42(4) (2021), 443-459, DOI:10.1080/01630563.2021.1884876.
  • Tseng, K. L., Hwang S. R. and Dragomir, S. S., On some new inequalities of Hermite-Hadamard-Fejer type involving convex functions, Demons. Math., 40(1) (2007), 51-64, DOI:10.1515/dema-2007-0108.
  • Qi, F., Yang, Z. L., Generalizations and refinements of Hermite-Hadamard’s inequality, Rocky Mountain J. Math., 35 (2005), 235-251.
Yıl 2023, Cilt: 72 Sayı: 4, 1110 - 1125, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1262668

Öz

Kaynakça

  • Amrahov, S. E., A note on Hadamard inequalities for the product of the convex functions, International J. of Research and Reviews in Applied Sciences, 5(2) (2010), 168-170.
  • Alomari, M., Darus, M. and Dragomir, S. S., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math., 41(4) (2010), 353-359.
  • Azpetia, A. G., Convex functions and the Hadamard inequality, Revista Colombiana Mat., 28 (1994), 7-12.
  • Bakula, M. K., Özdemir, M. E. and Pecaric, J., Hadamard-type inequalities for m-convex and $(\alpha,m)$-convex functions. J. Ineq. Pure Appl. Math., 9(4) (2008), Article 96.
  • Chen, F., Liu, X., On Hermite-Hadamard type inequalities for functions whose second derivatives absolute values are s-convex, ISRN Applied Mathematics, (2014), 1-4, DOI:10.1155/2014/829158.
  • Dragomir, S. S., Pearce, C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • Dragomir, S. S., On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 3(1) (2002).
  • El Farissi, A., Simple proof and refinement of Hermite-Hadamard inequality. J. Math. Inequal, 4(3) (2010), 365-369.
  • Fink, A. M., A best possible Hadamard inequality, Math. Inequal Appl., 1 (1998), 223-230.
  • Florea, A., Niculescu, C. P., A Hermite-Hadamard inequality for convex-concave symmetric functions, Bull. Soc. Sci. Math. Roum., 50(98) No:2 (2007), 149-156.
  • Hwang, D. Y., Tseng, K. L. and Yang, G. S., Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11(1) (2007), 63-73, DOI:10.11650/twjm/1500404635.
  • Ion, D. A., On an inequality due to Amrahov, Annals of University of Craiova, Math. Comp. Sci. Ser., 38(1) (2011), 92-95, DOI 10.52846/ami.v38i1.396.
  • Kemali, S., Yesilce, I., Adilov, G., B-Convexity, B-1-Convexity and Their Comparison, Numerical Functional Analysis and Optimization, 36(2) (2015), 133-146,. DOI:10.1080/01630563.2014.970641.
  • Kemali, S., Sezer, S., Tınaztepe, G., Adilov, G., s-Convex functions in the third sense, Korean Journal of Mathematics, 29(3) (2021), 593-602, DOI 10.11568/kjm.2021.29.3.593.
  • Mercer, A. M. D., A variant of Jensen’s inequality, J. Ineq. Pure and Appl. Math., 4(4) (2003), Article 73.
  • Mitrinovic, D. S., Pecaric, J. E. and Fink, A. M., Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
  • Niculescu C. P., Persson, L. E., Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange, 29 (2003/2004), 663-686.
  • Niculescu C. P., Persson, L. E., Convex Functions and Their Applications, A Contemporary Approach, CMS Books in Mathematics, V.23, Springer-Verlag, 2006.
  • Sarikaya, M. Z., Saglam, A. and Yildirim, H., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex or quasi-convex, International J. of Open Problems in Comp. Sci. and Math., 5(3) (2012), 1-14.
  • Sezer, S., Eken, Z., Tınaztepe, G., Adilov, G., p-Convex functions and some of their properties,Numerical Functional Analysis and Optimization, 42(4) (2021), 443-459, DOI:10.1080/01630563.2021.1884876.
  • Tseng, K. L., Hwang S. R. and Dragomir, S. S., On some new inequalities of Hermite-Hadamard-Fejer type involving convex functions, Demons. Math., 40(1) (2007), 51-64, DOI:10.1515/dema-2007-0108.
  • Qi, F., Yang, Z. L., Generalizations and refinements of Hermite-Hadamard’s inequality, Rocky Mountain J. Math., 35 (2005), 235-251.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Çağla Sekin 0000-0001-7176-5164

Mehmet Emin Tamar 0000-0001-8933-8769

İlham Aliyev 0000-0003-2353-7700

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 9 Mart 2023
Kabul Tarihi 22 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 72 Sayı: 4

Kaynak Göster

APA Sekin, Ç., Tamar, M. E., & Aliyev, İ. (2023). New proofs of Fejer’s and discrete Hermite-Hadamard inequalities with applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(4), 1110-1125. https://doi.org/10.31801/cfsuasmas.1262668
AMA Sekin Ç, Tamar ME, Aliyev İ. New proofs of Fejer’s and discrete Hermite-Hadamard inequalities with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Aralık 2023;72(4):1110-1125. doi:10.31801/cfsuasmas.1262668
Chicago Sekin, Çağla, Mehmet Emin Tamar, ve İlham Aliyev. “New Proofs of Fejer’s and Discrete Hermite-Hadamard Inequalities With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, sy. 4 (Aralık 2023): 1110-25. https://doi.org/10.31801/cfsuasmas.1262668.
EndNote Sekin Ç, Tamar ME, Aliyev İ (01 Aralık 2023) New proofs of Fejer’s and discrete Hermite-Hadamard inequalities with applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 4 1110–1125.
IEEE Ç. Sekin, M. E. Tamar, ve İ. Aliyev, “New proofs of Fejer’s and discrete Hermite-Hadamard inequalities with applications”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 72, sy. 4, ss. 1110–1125, 2023, doi: 10.31801/cfsuasmas.1262668.
ISNAD Sekin, Çağla vd. “New Proofs of Fejer’s and Discrete Hermite-Hadamard Inequalities With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/4 (Aralık 2023), 1110-1125. https://doi.org/10.31801/cfsuasmas.1262668.
JAMA Sekin Ç, Tamar ME, Aliyev İ. New proofs of Fejer’s and discrete Hermite-Hadamard inequalities with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:1110–1125.
MLA Sekin, Çağla vd. “New Proofs of Fejer’s and Discrete Hermite-Hadamard Inequalities With Applications”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 72, sy. 4, 2023, ss. 1110-25, doi:10.31801/cfsuasmas.1262668.
Vancouver Sekin Ç, Tamar ME, Aliyev İ. New proofs of Fejer’s and discrete Hermite-Hadamard inequalities with applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(4):1110-25.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.