Research Article
BibTex RIS Cite

Numerical approximation with the splitting algorithm to a solution of the modified regularized long wave equation

Year 2023, Volume: 72 Issue: 4, 1034 - 1054, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1289305

Abstract

In this article, a Lie-Totter splitting algorithm, which is highly reliable, flexible and convenient, is proposed along with the collocation finite element method to approximate solutions of the modified regular long wave equation. For this article, quintic B-spline approximation functions are used in the implementation of collocation methods. Four numerical examples including a single solitary wave, the interaction of two- three solitary waves, and a Maxwellian initial condition are presented to test the closeness of the solutions obtained by the proposed algorithm to the exact solutions. The solutions produced are compared with those in some studies with the same parameters that exist in the literature. The fact that the present algorithm produces results as intended is a proof of how useful, accurate and reliable it is. It can be stated that this fact will be very useful the application of the presented technique for other partial differential equations, with the thought that it may lead the reader to obtain superior results from this study.

References

  • Ali, A., Mesh Free Collocation Method for Numerical Solution of Initial-Boundary Value Problems Using Radial Basis Functions, Dissertation, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, 2009.
  • Alharbi, A.R., Al-Munawarah, A.M., Arabia, S., Numerical investigation for the GRLW equation using parabolic Monge Ampere equation, Comput. Sci., 15 (2020), 443–462.
  • Bhardwaj, D., Shankar, R., A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404. https://doi.org/10.1016/S0898-1221(00)00248-0
  • Başhan, A., Yağmurlu, N.M., A mixed method approach to the solitary wave, undular bore and boundary-forced solutions of the regularized long wave equation, Comp. Appl. Math., 41(169) (2022). https://doi.org/10.1007/s40314-022-01882-7
  • Benjamin, T.B., Bona, J.L., Mahony, J.J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032
  • Bhowmik, S.K., Karakoc, S.B.G., Numerical approximation of the generalized regularized long wave equation using Petrov–Galerkin finite element method, Numer. Methods Partial Differ. Equ., 35 (2019) 2236–2257. https://doi.org/10.1002/num.22410
  • Dağ, I., Saka, B., Irk, D., Application of cubic B-splines for numerical solution of the RLW equation, Appl. Math. Comput., 159 (2004) 373–389. https://doi.org/10.1016/j.amc.2003.10.020
  • Danaf, T.S., Raslan, K.R., Ali, K.K., New numerical treatment for the generalized regularized long wave equation based on finite difference scheme, Int. J. Soft Comput. Eng., 4(2014), 16–24.
  • Esen, A., Kutluay, S., Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006),833–845. https://doi.org/10.1016/j.amc.2005.05.032
  • El-Danaf, T.S., Raslan, K.R., Ali, K.K., Collocation method with cubic B-Splines for solving the GRLW equation, Int. J. Numer. Methods Appl., 15(1) (2016), 39-59. http://dx.doi.org/10.17654/NM015010039
  • Gardner, L.R.T., Gardner, G.A., Ayoub F.A., Amein, N.K., Approximations of solitary waves of the MRLW equation by B-spline finite element, Arab. J. Sci. Eng., 22 (1997), 183–193.
  • Guo, P.F., Zhang, L.W., Liew, K.M., Numerical analysis of generalized regularized long wave equation using the element free kp-Ritz method, Appl. Math. Comput., 240 (2014) 91–101. https://doi.org/10.1016/j.amc.2014.04.023
  • Haq, F., Islam, S., Tirmizi, I.A., A numerical technique for solution of the MRLW equation using quartic B-splines, Appl. Math. Model., 34(2010) 4151-4160. https://doi.org/10.1016/j.apm.2010.04.012
  • Hammad, D.A., El-Azab, M.S., Chebyshev–Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation, Appl. Math. Comput., 285 (2016), 228–240. https://doi.org/10.1016/j.amc.2016.03.033
  • Jain, P.C., Shankar, R., Singh, T.V., Numerical solution of regularized long-wave equation, Commun. Numer. Methods Eng., 9(1993), 579-586. https://doi.org/10.1002/cnm.1640090705
  • Karakoc, S.B.G., U¸car, Y., Ya˘gmurlu, N.M., Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci., 42 (2) (2015) 141-159.
  • Khalifa, A.K., Raslan, K.R., Alzubaidi, H.M., A finite difference scheme for the MRLW and solitary wave interactions, Appl. Math. Comput., 189 (2007) 346–354. https://doi.org/10.1016/j.amc.2006.11.104
  • Karakoc, S.B.G., Geyikli, T., Petrov-Galerkin finite element method for solving the MRLW equation, Math. Sci., 7(25) (2013). https://doi.org/10.1186/2251-7456-7-25
  • Karakoc, S.B.G., Geyikli, T., Bashan, A., A numerical solution of the modifed regularized long wave (MRLW) equation using quartic B-splines, TWMS J. Appl. Eng. Math., 3 (231) (2013)
  • Karakoc, S.B.G., Zeybek, H., Solitary-wave solutions of the GRLW equation using septic B-spline collocation method, Appl. Math. Comput., 289 (2016) 159–171. https://doi.org/10.1016/j.amc.2016.05.021
  • Karakoc, S.B.G., Yağmurlu, N.M., Uçar, Y., Numerical approximation to a solution of the modified regularized long wave equation using quintic B-splines, Boundary Value Problems, 27 (2013). https://doi.org/10.1186/1687-2770-2013-27
  • Khalifaa, A.K., Raslana, K.R., Alzubaidib, H.M., A collocation method with cubic B-splines for solving the MRLW equation, Journal of Computational and Applied Mathematics, 212 (2008) 406 – 418. https://doi.org/10.1016/j.cam.2006.12.029
  • Kutluay, S., Esen,A., A finite difference solution of the regularized long wave equation, Mathematical Problems in Engineering, (2006). https://doi.org/10.1155/MPE/2006/85743
  • Mei, L., Chen, Y., Numerical solutions of RLW equation using Galerkin method with extrapolation techniques, Comput. Phys. Commun., 183 (2012), 1609–1616. https://doi.org/10.1016/j.cpc.2012.02.029
  • Mei, L., Chen,Y., Explicit multistep method for the numerical solution of RLW equation, Appl. Math. Comput., 218 (2012), 9547–9554. https://doi.org/10.1016/j.amc.2012.03.050
  • MacNamara, S., Strang, G., Operator Splitting. In: Glowinski R., Osher S., Yin W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, 2016.
  • Mohammadi, M., Mokhtari, R., Solving the generalized regularized long wave equation on the basis of a reproducing kernel space, J. Comput. Appl. Math., 235 (2011). 4003–4014. https://doi.org/10.1016/j.cam.2011.02.012
  • Mohammadi, R., Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation, Chin. Phys. B, 24 (2015), 050206. https://doi.org/10.1088/1674-1056/24/5/050206
  • Olver, P.J., Euler operators and conservation laws of the BBM equation, Mathematical Proceedings of the Cambridge Philosophical Society, 85 (1979), 143-159. https://doi.org/10.1017/S0305004100055572
  • Oruç, O., Bulut, F., Esen, A., Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235–3253. https://doi.org/10.1007/s00009-016-0682-z
  • Prenter, PM., Splines and Variational Methods, Wiley, New York, 1975.
  • Peregrine, D.H., Calculations of the development of an undular bore, J. Fluid Mech., 25(1966), 321–330. https://doi.org/10.1017/S0022112066001678
  • Ramos, J.I., Solitary wave interactions of the GRLW equation, Chaos Solit. Fractals, 33 (2007), 479–491. https://doi.org/10.1016/j.chaos.2006.01.016
  • Raslan, K.R., El-Danaf, T.S., Solitary waves solutions of the MRLW equation using quintic B-splines, J. King Saud Univ. Sci., 22 (2010), 161–166. https://doi.org/10.1016/j.jksus.2010.04.004
  • Raslan, K.R., A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118. https://doi.org/10.1016/j.amc.2004.06.130
  • Raslan, K.R., Numerical study of the modified regularized long wave (MRLW) equation, Chaos Soliton Fractals, 42 (2009), 1845–1853. https://doi.org/10.1016/j.chaos.2009.03.098
  • Roshan, T., A Petrov-Galerkin method for solving the generalized regularized long wave (GRLW) equation, Comput. Math. Appl., 63 (2012), 943-956. https://doi.org/10.1016/j.camwa.2011.11.059
  • Saumya Ranjan Jena, S.R., Senapati, A., Gebremedhin, G.S., Approximate solution of MRLW equation in B-spline environment, Math. Sci., 14 (2020), 345–357. https://doi.org/10.1007/s40096-020-00345-6
  • Soliman, A.A., Hussien, M.H., Collocation solution for RLW equation with septic spline, Appl. Math. Comput. 161 (2005), 623-636. https://doi.org/10.1016/j.amc.2003.12.053
  • Soliman, A.A., Raslan, K.R., Collocation method using quadratic B-spline for the RLWequation, Int. J. Comput. Math., 78 (2001), 399-412. https://doi.org/10.1080/00207160108805119
  • Saka, B., Dag, I., Dogan, A., Galerkin method for the numerical solution of the RLW equation using quadratic B-splines,Int. J. Comput. Math., 81(6) (2004), 727-739. https://doi.org/10.1016/j.cam.2005.04.026
  • Trotter,H. F., On the product of semi-groups of operators, Proc. American Math. Society, 10 (1959) 545-551.
  • Xiao, X., Gui, D., Feng, X., A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen–Cahn equation, International Journal of Numerical Methods for Heat and Fluid Flow, 27 (2017), 530-542. https://doi.org/10.1108/HFF-12-2015-0521
  • Yagmurlu, N.M., Ucar, Y., Celikkaya, İ., Operator splitting for numerical solutions of the RLW equation, Journal of Applied Analysis and Computation, 8(5) 2018, 1494-1510. http://jaac-online.com/DOI:10.11948/2018
  • Zaki, SI., Solitary waves of the splitted RLW equation, Comput. Phys. Commun., 138 (2001), 80-91. https://doi.org/10.1016/S0010-4655(01)00200-4
  • Zeybek, H., Karakoç, S.B.G., A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline, Springer Plus, 5(199) (2016). https://doi.org/10.1186/s40064-016-1773-9
  • Zeybek, H., Karakoç, S.B.G., A collocation algorithm based on quintic B-splines for the solitary wave simulation of the GRLW equation, Scientia Iranica B, 26(6) (2019), 3356-3368. https://doi.org/10.24200/SCI.2018.20781
Year 2023, Volume: 72 Issue: 4, 1034 - 1054, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1289305

Abstract

References

  • Ali, A., Mesh Free Collocation Method for Numerical Solution of Initial-Boundary Value Problems Using Radial Basis Functions, Dissertation, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, 2009.
  • Alharbi, A.R., Al-Munawarah, A.M., Arabia, S., Numerical investigation for the GRLW equation using parabolic Monge Ampere equation, Comput. Sci., 15 (2020), 443–462.
  • Bhardwaj, D., Shankar, R., A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404. https://doi.org/10.1016/S0898-1221(00)00248-0
  • Başhan, A., Yağmurlu, N.M., A mixed method approach to the solitary wave, undular bore and boundary-forced solutions of the regularized long wave equation, Comp. Appl. Math., 41(169) (2022). https://doi.org/10.1007/s40314-022-01882-7
  • Benjamin, T.B., Bona, J.L., Mahony, J.J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032
  • Bhowmik, S.K., Karakoc, S.B.G., Numerical approximation of the generalized regularized long wave equation using Petrov–Galerkin finite element method, Numer. Methods Partial Differ. Equ., 35 (2019) 2236–2257. https://doi.org/10.1002/num.22410
  • Dağ, I., Saka, B., Irk, D., Application of cubic B-splines for numerical solution of the RLW equation, Appl. Math. Comput., 159 (2004) 373–389. https://doi.org/10.1016/j.amc.2003.10.020
  • Danaf, T.S., Raslan, K.R., Ali, K.K., New numerical treatment for the generalized regularized long wave equation based on finite difference scheme, Int. J. Soft Comput. Eng., 4(2014), 16–24.
  • Esen, A., Kutluay, S., Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006),833–845. https://doi.org/10.1016/j.amc.2005.05.032
  • El-Danaf, T.S., Raslan, K.R., Ali, K.K., Collocation method with cubic B-Splines for solving the GRLW equation, Int. J. Numer. Methods Appl., 15(1) (2016), 39-59. http://dx.doi.org/10.17654/NM015010039
  • Gardner, L.R.T., Gardner, G.A., Ayoub F.A., Amein, N.K., Approximations of solitary waves of the MRLW equation by B-spline finite element, Arab. J. Sci. Eng., 22 (1997), 183–193.
  • Guo, P.F., Zhang, L.W., Liew, K.M., Numerical analysis of generalized regularized long wave equation using the element free kp-Ritz method, Appl. Math. Comput., 240 (2014) 91–101. https://doi.org/10.1016/j.amc.2014.04.023
  • Haq, F., Islam, S., Tirmizi, I.A., A numerical technique for solution of the MRLW equation using quartic B-splines, Appl. Math. Model., 34(2010) 4151-4160. https://doi.org/10.1016/j.apm.2010.04.012
  • Hammad, D.A., El-Azab, M.S., Chebyshev–Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation, Appl. Math. Comput., 285 (2016), 228–240. https://doi.org/10.1016/j.amc.2016.03.033
  • Jain, P.C., Shankar, R., Singh, T.V., Numerical solution of regularized long-wave equation, Commun. Numer. Methods Eng., 9(1993), 579-586. https://doi.org/10.1002/cnm.1640090705
  • Karakoc, S.B.G., U¸car, Y., Ya˘gmurlu, N.M., Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method, Kuwait J. Sci., 42 (2) (2015) 141-159.
  • Khalifa, A.K., Raslan, K.R., Alzubaidi, H.M., A finite difference scheme for the MRLW and solitary wave interactions, Appl. Math. Comput., 189 (2007) 346–354. https://doi.org/10.1016/j.amc.2006.11.104
  • Karakoc, S.B.G., Geyikli, T., Petrov-Galerkin finite element method for solving the MRLW equation, Math. Sci., 7(25) (2013). https://doi.org/10.1186/2251-7456-7-25
  • Karakoc, S.B.G., Geyikli, T., Bashan, A., A numerical solution of the modifed regularized long wave (MRLW) equation using quartic B-splines, TWMS J. Appl. Eng. Math., 3 (231) (2013)
  • Karakoc, S.B.G., Zeybek, H., Solitary-wave solutions of the GRLW equation using septic B-spline collocation method, Appl. Math. Comput., 289 (2016) 159–171. https://doi.org/10.1016/j.amc.2016.05.021
  • Karakoc, S.B.G., Yağmurlu, N.M., Uçar, Y., Numerical approximation to a solution of the modified regularized long wave equation using quintic B-splines, Boundary Value Problems, 27 (2013). https://doi.org/10.1186/1687-2770-2013-27
  • Khalifaa, A.K., Raslana, K.R., Alzubaidib, H.M., A collocation method with cubic B-splines for solving the MRLW equation, Journal of Computational and Applied Mathematics, 212 (2008) 406 – 418. https://doi.org/10.1016/j.cam.2006.12.029
  • Kutluay, S., Esen,A., A finite difference solution of the regularized long wave equation, Mathematical Problems in Engineering, (2006). https://doi.org/10.1155/MPE/2006/85743
  • Mei, L., Chen, Y., Numerical solutions of RLW equation using Galerkin method with extrapolation techniques, Comput. Phys. Commun., 183 (2012), 1609–1616. https://doi.org/10.1016/j.cpc.2012.02.029
  • Mei, L., Chen,Y., Explicit multistep method for the numerical solution of RLW equation, Appl. Math. Comput., 218 (2012), 9547–9554. https://doi.org/10.1016/j.amc.2012.03.050
  • MacNamara, S., Strang, G., Operator Splitting. In: Glowinski R., Osher S., Yin W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, 2016.
  • Mohammadi, M., Mokhtari, R., Solving the generalized regularized long wave equation on the basis of a reproducing kernel space, J. Comput. Appl. Math., 235 (2011). 4003–4014. https://doi.org/10.1016/j.cam.2011.02.012
  • Mohammadi, R., Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation, Chin. Phys. B, 24 (2015), 050206. https://doi.org/10.1088/1674-1056/24/5/050206
  • Olver, P.J., Euler operators and conservation laws of the BBM equation, Mathematical Proceedings of the Cambridge Philosophical Society, 85 (1979), 143-159. https://doi.org/10.1017/S0305004100055572
  • Oruç, O., Bulut, F., Esen, A., Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235–3253. https://doi.org/10.1007/s00009-016-0682-z
  • Prenter, PM., Splines and Variational Methods, Wiley, New York, 1975.
  • Peregrine, D.H., Calculations of the development of an undular bore, J. Fluid Mech., 25(1966), 321–330. https://doi.org/10.1017/S0022112066001678
  • Ramos, J.I., Solitary wave interactions of the GRLW equation, Chaos Solit. Fractals, 33 (2007), 479–491. https://doi.org/10.1016/j.chaos.2006.01.016
  • Raslan, K.R., El-Danaf, T.S., Solitary waves solutions of the MRLW equation using quintic B-splines, J. King Saud Univ. Sci., 22 (2010), 161–166. https://doi.org/10.1016/j.jksus.2010.04.004
  • Raslan, K.R., A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118. https://doi.org/10.1016/j.amc.2004.06.130
  • Raslan, K.R., Numerical study of the modified regularized long wave (MRLW) equation, Chaos Soliton Fractals, 42 (2009), 1845–1853. https://doi.org/10.1016/j.chaos.2009.03.098
  • Roshan, T., A Petrov-Galerkin method for solving the generalized regularized long wave (GRLW) equation, Comput. Math. Appl., 63 (2012), 943-956. https://doi.org/10.1016/j.camwa.2011.11.059
  • Saumya Ranjan Jena, S.R., Senapati, A., Gebremedhin, G.S., Approximate solution of MRLW equation in B-spline environment, Math. Sci., 14 (2020), 345–357. https://doi.org/10.1007/s40096-020-00345-6
  • Soliman, A.A., Hussien, M.H., Collocation solution for RLW equation with septic spline, Appl. Math. Comput. 161 (2005), 623-636. https://doi.org/10.1016/j.amc.2003.12.053
  • Soliman, A.A., Raslan, K.R., Collocation method using quadratic B-spline for the RLWequation, Int. J. Comput. Math., 78 (2001), 399-412. https://doi.org/10.1080/00207160108805119
  • Saka, B., Dag, I., Dogan, A., Galerkin method for the numerical solution of the RLW equation using quadratic B-splines,Int. J. Comput. Math., 81(6) (2004), 727-739. https://doi.org/10.1016/j.cam.2005.04.026
  • Trotter,H. F., On the product of semi-groups of operators, Proc. American Math. Society, 10 (1959) 545-551.
  • Xiao, X., Gui, D., Feng, X., A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen–Cahn equation, International Journal of Numerical Methods for Heat and Fluid Flow, 27 (2017), 530-542. https://doi.org/10.1108/HFF-12-2015-0521
  • Yagmurlu, N.M., Ucar, Y., Celikkaya, İ., Operator splitting for numerical solutions of the RLW equation, Journal of Applied Analysis and Computation, 8(5) 2018, 1494-1510. http://jaac-online.com/DOI:10.11948/2018
  • Zaki, SI., Solitary waves of the splitted RLW equation, Comput. Phys. Commun., 138 (2001), 80-91. https://doi.org/10.1016/S0010-4655(01)00200-4
  • Zeybek, H., Karakoç, S.B.G., A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline, Springer Plus, 5(199) (2016). https://doi.org/10.1186/s40064-016-1773-9
  • Zeybek, H., Karakoç, S.B.G., A collocation algorithm based on quintic B-splines for the solitary wave simulation of the GRLW equation, Scientia Iranica B, 26(6) (2019), 3356-3368. https://doi.org/10.24200/SCI.2018.20781
There are 47 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Melike Karta 0000-0003-3412-4370

Publication Date December 29, 2023
Submission Date April 28, 2023
Acceptance Date July 18, 2023
Published in Issue Year 2023 Volume: 72 Issue: 4

Cite

APA Karta, M. (2023). Numerical approximation with the splitting algorithm to a solution of the modified regularized long wave equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(4), 1034-1054. https://doi.org/10.31801/cfsuasmas.1289305
AMA Karta M. Numerical approximation with the splitting algorithm to a solution of the modified regularized long wave equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2023;72(4):1034-1054. doi:10.31801/cfsuasmas.1289305
Chicago Karta, Melike. “Numerical Approximation With the Splitting Algorithm to a Solution of the Modified Regularized Long Wave Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 4 (December 2023): 1034-54. https://doi.org/10.31801/cfsuasmas.1289305.
EndNote Karta M (December 1, 2023) Numerical approximation with the splitting algorithm to a solution of the modified regularized long wave equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 4 1034–1054.
IEEE M. Karta, “Numerical approximation with the splitting algorithm to a solution of the modified regularized long wave equation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 4, pp. 1034–1054, 2023, doi: 10.31801/cfsuasmas.1289305.
ISNAD Karta, Melike. “Numerical Approximation With the Splitting Algorithm to a Solution of the Modified Regularized Long Wave Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/4 (December 2023), 1034-1054. https://doi.org/10.31801/cfsuasmas.1289305.
JAMA Karta M. Numerical approximation with the splitting algorithm to a solution of the modified regularized long wave equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:1034–1054.
MLA Karta, Melike. “Numerical Approximation With the Splitting Algorithm to a Solution of the Modified Regularized Long Wave Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 4, 2023, pp. 1034-5, doi:10.31801/cfsuasmas.1289305.
Vancouver Karta M. Numerical approximation with the splitting algorithm to a solution of the modified regularized long wave equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(4):1034-5.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.