Research Article
BibTex RIS Cite

Fractional order mathematical modeling of lumpy skin disease

Year 2024, Volume: 73 Issue: 1, 192 - 210, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1207144

Abstract

In this article, we study the fractional-order SEIR mathematical model of Lumpy Skin Disease (LSD) in the sense of Caputo. The existence, uniqueness, non-negativity and boundedness of the solutions are established using fixed point theory. Using a next-generation matrix, the reproduction number $R_{0}$ is determined for the disease’s prognosis and durability. Using the fractional Routh-Hurwitz stability criterion, the evolving behaviour of the equilibria is investigated. Generalized Adams–Bashforth–Moulton approach is applied to arrive at the solution of the proposed model. Furthermore, to visualise the efficiency of our theoretical conclusions and to track the impact of arbitrary-order derivative, numerical simulations of the model and their graphical presentations are carried out using MATLAB(R2021a).

References

  • Abboubakar, H., Kamgang, J. C., Nkamba, N. L., Tieudjo, D., Emini, L., Modeling the dynamics of arboviral diseases with vaccination perspective, Biomath, 4(1) (2015), ID-1507241. https://doi.org/10.11145/j.biomath.2015.07.241
  • Abboubakar, H., Kom Regonne, R., Sooppy Nisar, K., Fractional dynamics of typhoid fever transmission models with mass vaccination perspectives, Fractal and Fractional, 5(4) (2021), 149. https://doi.org/10.3390/fractalfract5040149
  • Abdulqa, H. Y., Rahman, H. S., Dyary, H. O., Othman, H. H., Lumpy skin disease, Reproductive Immunology: Open Access, 1(4) (2016), 25. https://doi.org/10.21767/2476-1974.100025
  • Acharya, K. P., Subedi, D., First outbreak of lumpy skin disease in Nepal, Preventive Veterinary Medicine, 102(4) (2020), 274–283. https://doi.org/10.1111/tbed.13815
  • Ahmed, E., El-Sayed, A. M. A., El-Saka, H. A., On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358(1) (2006), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087
  • Al-Salihi, K., Lumpy skin disease: Review of literature, Mirror of Research in Veterinary Sciences and Animals, 3(3) (2014), 6–23.
  • Arjkumpa, O., Suwannaboon, M., Boonrod, M., Punyawan, I., Liangchaisiri, S., Laobannue, P., Punyapornwithaya, V., The first lumpy skin disease outbreak in Thailand (2021): Epidemiological features and spatio-temporal analysis, Frontiers in Veterinary Science, 8 (2022), 1580. https://doi.org/10.3389/fvets.2021.799065
  • Azeem, S., Sharma, B., Shabir, S., Akbar, H., Venter, E., Lumpy skin disease is expanding its geographic range: A challenge for Asian livestock management and food security, The Veterinary Journal, 279 (2022), 105785. https://doi.org/10.1016/j.tvjl.2021.105785
  • Atangana, A., Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint arXiv:1602.03408, (2016).
  • Baleanu, D., Ghassabzade, F. A., Nieto, J. J., Jajarmi, A., On a new and generalized fractional model for a real cholera outbreak, Alexandria Engineering Journal, 61(11) (2022), 9175-9186. https://doi.org/10.1016/j.aej.2022.02.054
  • Baleanu, D., Hasanabadi, M., Vaziri, A. M., Jajarmi, A., A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach, Chaos, Solitons and Fractals, 167 (2023), 113078. https://doi.org/10.1016/j.chaos.2022.113078
  • Bansal, K., Arora, S., Pritam, K. S., Mathur, T., Agarwal, S., Dynamics of crime transmission using fractional-order differential equations, Fractals, 30(1) (2022), 2250012 – 1485. https://doi:10.1142/S0218348X22500128
  • Bansal, K., Mathur, T., Singh, N. S. S., Agarwal, S., Analysis of illegal drug transmission model using fractional delay differential equations, AIMS Mathematics, 7(10) (2022), 18173–18193. https://doi.org/10.3934/math.20221000
  • Butt, A. I. K., Ahmad, W., Rafiq, M., Baleanu, D., Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alexandria Engineering Journal, 61(9) (2022), 7007–7027. https://doi.org/10.1016/j.aej.2021.12.042
  • Butt, A. I. K., Imran, M., Batool, S., Nuwairan, M. A., Theoretical analysis of a COVID-19 CF-fractional model to optimally control the spread of pandemic, Symmetry, 15(2) (2023), 380. https://doi.org/10.3390/sym15020380
  • Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1(2) (2015), 73–85.
  • Chen, Y., Liu, F., Yu, Q., Li, T., Review of fractional epidemic models, Applied Mathematical Modelling, 97 (2021), 281–307. https://doi.org/10.1016/j.apm.2021.03.044
  • Das, M., Chowdhury, M. S. R., Akter, S., Mondal, A. K., Uddin, M. J., Rahman, M. M., Rahman, M. M., An updated review on lumpy skin disease: perspective of Southeast Asian countries, J. Adv. Biotechnol. Exp. Ther, 4(3) (2021), 322–333. https://doi.org/10.5455/jabet.2021.d133
  • Davies, G. F., Lumpy skin disease of cattle: A growing problem in Africa and the Near East, World Ani Rev., 68(3) (1991), 37–42.
  • Djordjevic, J., Silva, C. J., Torres, D. F., A stochastic SICA epidemic model for HIV transmission, Applied Mathematics Letters, 84 (2018), 168-175. https://doi.org/10.1016/j.aml.2018.05.005
  • Gelaye, E., Belay, A., Ayelet, G., Jenberie, S., Yami, M., Loitsch, A., Lamien, C. E., Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure, Antiviral Research, 119 (2015), 28-35.
  • Garrappa, R., Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6(2) (2018), 16. https://doi.org/10.3390/math6020016
  • Gupta, T., Patial, V., Bali, D., Angaria, S., Sharma, M., Chahota, R., A review: Lumpy skin disease and its emergence in India, Veterinary Research Communications, 44(3) (2020), 111–118. https://doi.org/10.1007/s11259-020-09780-1
  • https://www.fao.org/home/en.
  • Hasib, F. M. Y., Islam, M. S., Das, T., Rana, E. A., Uddin, M. H., Bayzid, M., Alim, M. A., Lumpy skin disease outbreak in cattle population of Chattogram, Bangladesh, Veterinary Medicine and Science, 7(5) (2021), 1616-1624.
  • Iqbal, M. S., Yasin, M. W., Ahmed, N., Akg¨ul, A., Rafiq, M., Raza, A., Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation and its measurable properties, Journal of Computational and Applied Mathematics, 418 (2023), 114618. https://doi.org/10.1016/j.cam.2022.114618
  • Katugampola, U. N., New approach to a generalized fractional integral, Applied Mathematics and Computation, 218(3) (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062
  • Khan, Y. R., Ali, A., Hussain, K., Ijaz, M., Rabbani, A. H., Khan, R. L., Abbas, S. N., Aziz, M. U., Ghaffar, A., Sajid, H. A., A review: surveillance of lumpy skin disease (LSD) a growing problem in Asia, Microbial Pathogenesis, 158 (2021), 105050. https://doi.org/10.1016/j.micpath.2021.105050
  • Kexue, L., Jigen, P., Laplace transform and fractional differential equations, Applied Mathematics Letters, 24(12) (2011), 2019–2023. https://doi.org/10.1016/j.aml.2011.05.035
  • Kononov, A., Prutnikov, P., Shumilova, I., Kononova, S., Nesterov, A., Byadovskaya, O., Sprygin, A., Determination of lumpy skin disease virus in bovine meat and offal products following experimental infection, Transboundary and Emerging diseases, 66(3) (2019), 1332–1340. https://doi.org/10.1111/tbed.13158
  • Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204, Elsevier, 2006.
  • Lu, G., Xie, J., Luo, J., Shao, R., Jia, K., Li, S., Lumpy skin disease outbreaks in China, since 3 August 2019, Transboundary and Emerging Diseases, 68(2) (2021), 216–219. https://doi.org/10.1111/tbed.13898
  • Lumpy Skin Disease(LSD) field manual. https://www.fao.org/3/i7330e/i7330e.pdf
  • Lumpy Skin Disease: Ban on livestock transport from 14 districts. The Indian Express. 27 July 2022; Cattle fairs brought to a halt in Rajasthan to control lumpy skin disease. The Hindu. 6 August 2022. ISSN 0971-751X, https://www.thehindu.com/news/national/other-states/cattle-fairs-brought-to-a-halt-inrajasthan-to-control-lumpy-skin-disease/article65737852.ece
  • Mainardi, F., On some properties of the Mittag-Leffler function $E_{\alpha}(-t^{\alpha}$, completely monotone for $t>$0 with $0<\alpha<1$, Discrete and Continuous Dynamical Systems Series B (DCDS-B)Series B, 19(7) (2014), 2267–2278. https://doi.org/10.3934/dcdsb.2014.19.2267
  • Mehmood, N., Abbas, A., Akgül, A., Abdeljawad, T., Alqudah, M. A., Existence and stability results for coupled system of fractional differential equations involving AB-Caputo derivative, Fractals, (2023), 2340023. https://doi.org/10.1142/S0218348X23400236
  • Moonchai, S., Himakalasa, A., Rojsiraphisal, T., Arjkumpa, O., Panyasomboonying, P., Kuatako, N., Punyapornwithaya, V., Modelling epidemic growth models for lumpy skin disease cases in Thailand using nationwide outbreak data, 2021–2022, Infectious Disease Modelling, 8(1) (2023), 282–293. https://doi.org/10.1016/j.idm.2023.02.004
  • Morris, J. P. A., Pseudo-urticaria, Northern Rhodesia Department of Animal Health, Annual Report, 1930(12)(1931).
  • Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
  • Ndaırou, F., Area, I., Nieto, J. J., Silva, C. J., Torres, D. F., Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil, Mathematical Methods in the Applied Sciences, 41(18) (2018), 8929–8941. https://doi.org/10.1002/mma.4702
  • https://www.nddb.coop/information/stats/pop
  • Nuugulu, S. M., Shikongo, A., Elago, D., Salom, A. T., Owolabi, K. M., Fractional SEIR model for modelling the spread of COVID-19 in Namibia, In Mathematical Analysis for Transmission of COVID-19 (pp. 161-184). Springer, Singapore, 2021.
  • Nisar, K. S., Ahmad, S., Ullah, A., Shah, K., Alrabaiah, H., Arfan, M., Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data, Results in Physics, 21 (2021), 103772. https://doi.org/10.1016/j.rinp.2020.103772
  • Odibat, Z. M., Shawagfeh, N. T., Generalized Taylor’s formula, Applied Mathematics and Computation, 186(1) (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102
  • OIE Lumpy skin Disease OIE Terrestrial Mannual 2017 Chapter 2.4.13.
  • Onyejekwe, O. O., Alemu, A., Ambachew, B., Tigabie, A., Epidemiological study and optimal control for Lumpy Skin Disease (LSD) in Ethiopia, Advances in Infectious Diseases, 9(1) (2019), 8–24. https://doi.org/10.4236/aid.2019.91002
  • Partohaghighi, M., Akgül, A., Akgül, E. K., Attia, N., De la Sen, M., Bayram, M., Analysis of the fractional differential equations using two different methods, Symmetry, 15(1) (2023), 65. https://doi.org/10.3390/sym15010065
  • Petras , I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science and Business Media, 2011.
  • Podlubny, I., Fractional Differential Equations, 198 Academic Press. San Diego, California, USA, 1999.
  • Pollard, H., The completely monotonic character of the Mittag-Leffler function Ea(−x), Bulletin of the American Mathematical Society, 54(12) (1948), 1115–1116.
  • Roche, X., Rozstalnyy, A., TagoPacheco, D., Pittiglio, C., Kamata, A., Beltran Alcrudo, D., Bisht, K., Karki, S., Kayamori, J., Larfaoui, F., Raizman, E., VonDobschuetz, S., Dhingra, M. S., Sumption, K., Introduction and spread of lumpy skin disease in South, East and Southeast Asia: qualitative risk assessment and management, Food and Agriculture Org. (2021).
  • Rachah, A., Torres, D. F., Dynamics and optimal control of Ebola transmission, Mathematics in Computer Science, 10(3) (2016), 331–342. https://doi.org/10.1007/s11786-016-0268-y
  • Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, 1993.
  • Shahzad, A., Imran, M., Tahir, M., Khan, S. A., Akgül, A., Abdullaev, S., Yahia, I. S., Brownian motion and thermophoretic diffusion impact on Darcy-Forchheimer flow of bioconvective micropolar nanofluid between double disks with Cattaneo-Christov heat flux, Alexandria Engineering Journal, 62 (2023), 1-15. https://doi.org/10.1016/j.aej.2022.07.023
  • Sin, C. S., Well-posedness of general Caputo-type fractional differential equations, Fractional Calculus and Applied Analysis, 21(3) (2018), 819–832. https://doi.org/10.1515/fca-2018-0043
  • Sudhakar, S. B., Mishra, N., Kalaiyarasu, S., Jhade, S.K., Hemadri, D., Sood, R., Bal, G.C., Nayak, M.K., Pradhan, S.K., Singh, V.P., Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: Epidemiological features and molecular studies, Transboundary and Emerging Diseases, 67(6) (2020), 2408–2422. DOI: 10.1111/tbed.13579
  • Thirthar, A. A., Abboubakar, H., Khan, A., Abdeljawad, T., Mathematical modeling of the COVID-19 epidemic with fear impact, AIMS Mathematics, 8(3) (2023), 6447–6465. https://doi.org/10.3934/math.2023326
  • Tran, H. T. T., Truong, A. D., Dang, A. K., Ly, D. V., Nguyen, C. T., Chu, N. T., Dang, H. V., Lumpy skin disease outbreaks in Vietnam, 2020, Transboundary and Emerging Diseases, 68(3) (2021), 977–980. https://doi.org/10.1111/tbed.14022
  • Tuppurainen, E., Alexandrov, T., Beltran-Alcrudo, D., Lumpy skin disease field manual–A manual for veterinarians, FAO Animal Production and Health Manual No. 20 (2017), pp. 1–60. Rome: Food and Agriculture Organization of the United Nations (FAO).
  • Ullah, A., Abdeljawad, T., Ahmad, S., Shah, K., Study of a fractional-order epidemic model of childhood diseases, J. Funct. Space, (2020). https://doi.org/10.1155/2020/5895310
  • Van den Driessche, P., Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180(1-2) (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
  • Zhang, R., Shah, N. A., El-Zahar, E. R., Akgül, A., Chung, J. D., Numerical analysis of fractional-order Emden-Fowler equations using modified variational iteration method, Fractals, (2023), 2340028. https://doi.org/10.1142/S0218348X23400285
Year 2024, Volume: 73 Issue: 1, 192 - 210, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1207144

Abstract

References

  • Abboubakar, H., Kamgang, J. C., Nkamba, N. L., Tieudjo, D., Emini, L., Modeling the dynamics of arboviral diseases with vaccination perspective, Biomath, 4(1) (2015), ID-1507241. https://doi.org/10.11145/j.biomath.2015.07.241
  • Abboubakar, H., Kom Regonne, R., Sooppy Nisar, K., Fractional dynamics of typhoid fever transmission models with mass vaccination perspectives, Fractal and Fractional, 5(4) (2021), 149. https://doi.org/10.3390/fractalfract5040149
  • Abdulqa, H. Y., Rahman, H. S., Dyary, H. O., Othman, H. H., Lumpy skin disease, Reproductive Immunology: Open Access, 1(4) (2016), 25. https://doi.org/10.21767/2476-1974.100025
  • Acharya, K. P., Subedi, D., First outbreak of lumpy skin disease in Nepal, Preventive Veterinary Medicine, 102(4) (2020), 274–283. https://doi.org/10.1111/tbed.13815
  • Ahmed, E., El-Sayed, A. M. A., El-Saka, H. A., On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358(1) (2006), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087
  • Al-Salihi, K., Lumpy skin disease: Review of literature, Mirror of Research in Veterinary Sciences and Animals, 3(3) (2014), 6–23.
  • Arjkumpa, O., Suwannaboon, M., Boonrod, M., Punyawan, I., Liangchaisiri, S., Laobannue, P., Punyapornwithaya, V., The first lumpy skin disease outbreak in Thailand (2021): Epidemiological features and spatio-temporal analysis, Frontiers in Veterinary Science, 8 (2022), 1580. https://doi.org/10.3389/fvets.2021.799065
  • Azeem, S., Sharma, B., Shabir, S., Akbar, H., Venter, E., Lumpy skin disease is expanding its geographic range: A challenge for Asian livestock management and food security, The Veterinary Journal, 279 (2022), 105785. https://doi.org/10.1016/j.tvjl.2021.105785
  • Atangana, A., Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint arXiv:1602.03408, (2016).
  • Baleanu, D., Ghassabzade, F. A., Nieto, J. J., Jajarmi, A., On a new and generalized fractional model for a real cholera outbreak, Alexandria Engineering Journal, 61(11) (2022), 9175-9186. https://doi.org/10.1016/j.aej.2022.02.054
  • Baleanu, D., Hasanabadi, M., Vaziri, A. M., Jajarmi, A., A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach, Chaos, Solitons and Fractals, 167 (2023), 113078. https://doi.org/10.1016/j.chaos.2022.113078
  • Bansal, K., Arora, S., Pritam, K. S., Mathur, T., Agarwal, S., Dynamics of crime transmission using fractional-order differential equations, Fractals, 30(1) (2022), 2250012 – 1485. https://doi:10.1142/S0218348X22500128
  • Bansal, K., Mathur, T., Singh, N. S. S., Agarwal, S., Analysis of illegal drug transmission model using fractional delay differential equations, AIMS Mathematics, 7(10) (2022), 18173–18193. https://doi.org/10.3934/math.20221000
  • Butt, A. I. K., Ahmad, W., Rafiq, M., Baleanu, D., Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alexandria Engineering Journal, 61(9) (2022), 7007–7027. https://doi.org/10.1016/j.aej.2021.12.042
  • Butt, A. I. K., Imran, M., Batool, S., Nuwairan, M. A., Theoretical analysis of a COVID-19 CF-fractional model to optimally control the spread of pandemic, Symmetry, 15(2) (2023), 380. https://doi.org/10.3390/sym15020380
  • Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1(2) (2015), 73–85.
  • Chen, Y., Liu, F., Yu, Q., Li, T., Review of fractional epidemic models, Applied Mathematical Modelling, 97 (2021), 281–307. https://doi.org/10.1016/j.apm.2021.03.044
  • Das, M., Chowdhury, M. S. R., Akter, S., Mondal, A. K., Uddin, M. J., Rahman, M. M., Rahman, M. M., An updated review on lumpy skin disease: perspective of Southeast Asian countries, J. Adv. Biotechnol. Exp. Ther, 4(3) (2021), 322–333. https://doi.org/10.5455/jabet.2021.d133
  • Davies, G. F., Lumpy skin disease of cattle: A growing problem in Africa and the Near East, World Ani Rev., 68(3) (1991), 37–42.
  • Djordjevic, J., Silva, C. J., Torres, D. F., A stochastic SICA epidemic model for HIV transmission, Applied Mathematics Letters, 84 (2018), 168-175. https://doi.org/10.1016/j.aml.2018.05.005
  • Gelaye, E., Belay, A., Ayelet, G., Jenberie, S., Yami, M., Loitsch, A., Lamien, C. E., Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure, Antiviral Research, 119 (2015), 28-35.
  • Garrappa, R., Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6(2) (2018), 16. https://doi.org/10.3390/math6020016
  • Gupta, T., Patial, V., Bali, D., Angaria, S., Sharma, M., Chahota, R., A review: Lumpy skin disease and its emergence in India, Veterinary Research Communications, 44(3) (2020), 111–118. https://doi.org/10.1007/s11259-020-09780-1
  • https://www.fao.org/home/en.
  • Hasib, F. M. Y., Islam, M. S., Das, T., Rana, E. A., Uddin, M. H., Bayzid, M., Alim, M. A., Lumpy skin disease outbreak in cattle population of Chattogram, Bangladesh, Veterinary Medicine and Science, 7(5) (2021), 1616-1624.
  • Iqbal, M. S., Yasin, M. W., Ahmed, N., Akg¨ul, A., Rafiq, M., Raza, A., Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation and its measurable properties, Journal of Computational and Applied Mathematics, 418 (2023), 114618. https://doi.org/10.1016/j.cam.2022.114618
  • Katugampola, U. N., New approach to a generalized fractional integral, Applied Mathematics and Computation, 218(3) (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062
  • Khan, Y. R., Ali, A., Hussain, K., Ijaz, M., Rabbani, A. H., Khan, R. L., Abbas, S. N., Aziz, M. U., Ghaffar, A., Sajid, H. A., A review: surveillance of lumpy skin disease (LSD) a growing problem in Asia, Microbial Pathogenesis, 158 (2021), 105050. https://doi.org/10.1016/j.micpath.2021.105050
  • Kexue, L., Jigen, P., Laplace transform and fractional differential equations, Applied Mathematics Letters, 24(12) (2011), 2019–2023. https://doi.org/10.1016/j.aml.2011.05.035
  • Kononov, A., Prutnikov, P., Shumilova, I., Kononova, S., Nesterov, A., Byadovskaya, O., Sprygin, A., Determination of lumpy skin disease virus in bovine meat and offal products following experimental infection, Transboundary and Emerging diseases, 66(3) (2019), 1332–1340. https://doi.org/10.1111/tbed.13158
  • Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204, Elsevier, 2006.
  • Lu, G., Xie, J., Luo, J., Shao, R., Jia, K., Li, S., Lumpy skin disease outbreaks in China, since 3 August 2019, Transboundary and Emerging Diseases, 68(2) (2021), 216–219. https://doi.org/10.1111/tbed.13898
  • Lumpy Skin Disease(LSD) field manual. https://www.fao.org/3/i7330e/i7330e.pdf
  • Lumpy Skin Disease: Ban on livestock transport from 14 districts. The Indian Express. 27 July 2022; Cattle fairs brought to a halt in Rajasthan to control lumpy skin disease. The Hindu. 6 August 2022. ISSN 0971-751X, https://www.thehindu.com/news/national/other-states/cattle-fairs-brought-to-a-halt-inrajasthan-to-control-lumpy-skin-disease/article65737852.ece
  • Mainardi, F., On some properties of the Mittag-Leffler function $E_{\alpha}(-t^{\alpha}$, completely monotone for $t>$0 with $0<\alpha<1$, Discrete and Continuous Dynamical Systems Series B (DCDS-B)Series B, 19(7) (2014), 2267–2278. https://doi.org/10.3934/dcdsb.2014.19.2267
  • Mehmood, N., Abbas, A., Akgül, A., Abdeljawad, T., Alqudah, M. A., Existence and stability results for coupled system of fractional differential equations involving AB-Caputo derivative, Fractals, (2023), 2340023. https://doi.org/10.1142/S0218348X23400236
  • Moonchai, S., Himakalasa, A., Rojsiraphisal, T., Arjkumpa, O., Panyasomboonying, P., Kuatako, N., Punyapornwithaya, V., Modelling epidemic growth models for lumpy skin disease cases in Thailand using nationwide outbreak data, 2021–2022, Infectious Disease Modelling, 8(1) (2023), 282–293. https://doi.org/10.1016/j.idm.2023.02.004
  • Morris, J. P. A., Pseudo-urticaria, Northern Rhodesia Department of Animal Health, Annual Report, 1930(12)(1931).
  • Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
  • Ndaırou, F., Area, I., Nieto, J. J., Silva, C. J., Torres, D. F., Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil, Mathematical Methods in the Applied Sciences, 41(18) (2018), 8929–8941. https://doi.org/10.1002/mma.4702
  • https://www.nddb.coop/information/stats/pop
  • Nuugulu, S. M., Shikongo, A., Elago, D., Salom, A. T., Owolabi, K. M., Fractional SEIR model for modelling the spread of COVID-19 in Namibia, In Mathematical Analysis for Transmission of COVID-19 (pp. 161-184). Springer, Singapore, 2021.
  • Nisar, K. S., Ahmad, S., Ullah, A., Shah, K., Alrabaiah, H., Arfan, M., Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data, Results in Physics, 21 (2021), 103772. https://doi.org/10.1016/j.rinp.2020.103772
  • Odibat, Z. M., Shawagfeh, N. T., Generalized Taylor’s formula, Applied Mathematics and Computation, 186(1) (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102
  • OIE Lumpy skin Disease OIE Terrestrial Mannual 2017 Chapter 2.4.13.
  • Onyejekwe, O. O., Alemu, A., Ambachew, B., Tigabie, A., Epidemiological study and optimal control for Lumpy Skin Disease (LSD) in Ethiopia, Advances in Infectious Diseases, 9(1) (2019), 8–24. https://doi.org/10.4236/aid.2019.91002
  • Partohaghighi, M., Akgül, A., Akgül, E. K., Attia, N., De la Sen, M., Bayram, M., Analysis of the fractional differential equations using two different methods, Symmetry, 15(1) (2023), 65. https://doi.org/10.3390/sym15010065
  • Petras , I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science and Business Media, 2011.
  • Podlubny, I., Fractional Differential Equations, 198 Academic Press. San Diego, California, USA, 1999.
  • Pollard, H., The completely monotonic character of the Mittag-Leffler function Ea(−x), Bulletin of the American Mathematical Society, 54(12) (1948), 1115–1116.
  • Roche, X., Rozstalnyy, A., TagoPacheco, D., Pittiglio, C., Kamata, A., Beltran Alcrudo, D., Bisht, K., Karki, S., Kayamori, J., Larfaoui, F., Raizman, E., VonDobschuetz, S., Dhingra, M. S., Sumption, K., Introduction and spread of lumpy skin disease in South, East and Southeast Asia: qualitative risk assessment and management, Food and Agriculture Org. (2021).
  • Rachah, A., Torres, D. F., Dynamics and optimal control of Ebola transmission, Mathematics in Computer Science, 10(3) (2016), 331–342. https://doi.org/10.1007/s11786-016-0268-y
  • Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, 1993.
  • Shahzad, A., Imran, M., Tahir, M., Khan, S. A., Akgül, A., Abdullaev, S., Yahia, I. S., Brownian motion and thermophoretic diffusion impact on Darcy-Forchheimer flow of bioconvective micropolar nanofluid between double disks with Cattaneo-Christov heat flux, Alexandria Engineering Journal, 62 (2023), 1-15. https://doi.org/10.1016/j.aej.2022.07.023
  • Sin, C. S., Well-posedness of general Caputo-type fractional differential equations, Fractional Calculus and Applied Analysis, 21(3) (2018), 819–832. https://doi.org/10.1515/fca-2018-0043
  • Sudhakar, S. B., Mishra, N., Kalaiyarasu, S., Jhade, S.K., Hemadri, D., Sood, R., Bal, G.C., Nayak, M.K., Pradhan, S.K., Singh, V.P., Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: Epidemiological features and molecular studies, Transboundary and Emerging Diseases, 67(6) (2020), 2408–2422. DOI: 10.1111/tbed.13579
  • Thirthar, A. A., Abboubakar, H., Khan, A., Abdeljawad, T., Mathematical modeling of the COVID-19 epidemic with fear impact, AIMS Mathematics, 8(3) (2023), 6447–6465. https://doi.org/10.3934/math.2023326
  • Tran, H. T. T., Truong, A. D., Dang, A. K., Ly, D. V., Nguyen, C. T., Chu, N. T., Dang, H. V., Lumpy skin disease outbreaks in Vietnam, 2020, Transboundary and Emerging Diseases, 68(3) (2021), 977–980. https://doi.org/10.1111/tbed.14022
  • Tuppurainen, E., Alexandrov, T., Beltran-Alcrudo, D., Lumpy skin disease field manual–A manual for veterinarians, FAO Animal Production and Health Manual No. 20 (2017), pp. 1–60. Rome: Food and Agriculture Organization of the United Nations (FAO).
  • Ullah, A., Abdeljawad, T., Ahmad, S., Shah, K., Study of a fractional-order epidemic model of childhood diseases, J. Funct. Space, (2020). https://doi.org/10.1155/2020/5895310
  • Van den Driessche, P., Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180(1-2) (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
  • Zhang, R., Shah, N. A., El-Zahar, E. R., Akgül, A., Chung, J. D., Numerical analysis of fractional-order Emden-Fowler equations using modified variational iteration method, Fractals, (2023), 2340028. https://doi.org/10.1142/S0218348X23400285
There are 62 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Yogeeta Narwal 0000-0003-2956-6836

Savita Rathee 0000-0002-1540-007X

Publication Date March 16, 2024
Submission Date November 19, 2022
Acceptance Date October 25, 2023
Published in Issue Year 2024 Volume: 73 Issue: 1

Cite

APA Narwal, Y., & Rathee, S. (2024). Fractional order mathematical modeling of lumpy skin disease. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(1), 192-210. https://doi.org/10.31801/cfsuasmas.1207144
AMA Narwal Y, Rathee S. Fractional order mathematical modeling of lumpy skin disease. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2024;73(1):192-210. doi:10.31801/cfsuasmas.1207144
Chicago Narwal, Yogeeta, and Savita Rathee. “Fractional Order Mathematical Modeling of Lumpy Skin Disease”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 1 (March 2024): 192-210. https://doi.org/10.31801/cfsuasmas.1207144.
EndNote Narwal Y, Rathee S (March 1, 2024) Fractional order mathematical modeling of lumpy skin disease. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 1 192–210.
IEEE Y. Narwal and S. Rathee, “Fractional order mathematical modeling of lumpy skin disease”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 1, pp. 192–210, 2024, doi: 10.31801/cfsuasmas.1207144.
ISNAD Narwal, Yogeeta - Rathee, Savita. “Fractional Order Mathematical Modeling of Lumpy Skin Disease”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/1 (March 2024), 192-210. https://doi.org/10.31801/cfsuasmas.1207144.
JAMA Narwal Y, Rathee S. Fractional order mathematical modeling of lumpy skin disease. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:192–210.
MLA Narwal, Yogeeta and Savita Rathee. “Fractional Order Mathematical Modeling of Lumpy Skin Disease”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 1, 2024, pp. 192-10, doi:10.31801/cfsuasmas.1207144.
Vancouver Narwal Y, Rathee S. Fractional order mathematical modeling of lumpy skin disease. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(1):192-210.

Cited By


Biomedical modelling through path analysis approach
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1328284

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.