Research Article
BibTex RIS Cite

Certain results concerning (p, q)-parameterized beta logarithmic function and their properties

Year 2024, Volume: 73 Issue: 2, 306 - 318, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1260059

Abstract

The primary object of this article is to introduce (p, q)-beta logarithmic function with extended beta function by using the logarithmic mean. We evaluate different properties and representations of beta logarithmic function. Further, it is evaluated logarithmic distribution, hypergeometric and confluent hypergeometric functions via logarithmic mean are evaluated and their essential properties are studied. Numerous formulas of (p, q)-beta logarithmic functions such as integral formula, derivative formula, transformation formula and generating function are analyzed.

References

  • Andrews, G.E., Askey, R., Roy, R., Special Functions, Cambridge University Press, Cambridge, 1999.
  • Chaudhry, M.A., Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55(1) (1994), 99–123. https://doi.org/10.1016/0377-0427(94)90187-2
  • Chaudhry, M.A., Qadir, A., Rafique, M., Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl. Math., 78 (1997), 19–32. https://doi.org/10.1016/S0377-0427(96)00102-1
  • Chaudhry, M.A., Qadir, A., Srivastava, H.M., Paris, R.B., Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589–602. https://doi.org/10.1016/j.amc.2003.09.017
  • Choi, J., Rathie, A.K., Parmar, R.K., Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Mathematical J., 36(2) (2014), 357–385. https://doi.org/ 10.5831/hmj.2014.36.2.357
  • Kaba, D.G., On some inequalities satisfied by beta and gamma functions, South African Statistical Journal, 12(1) (1978), 25–31.
  • Khan, N.U., Aman, M., Usman, T., Extended beta, hypergeometric and confluent hypergeometric functions via multi-index Mittag-Leffler function, Proc. of the Jangjeon Mathematical Society, 25(1) (2022), 43–58. https://doi.org/ 10.17777/pjms2022.25.1.43
  • Khan, N.U., Khan, M. I., Khan, O., Evaluation of transforms and fractional calculus of new extended Wright function, Int. J. Appl. Comput. Math., 8(4) (2022), 163. https://doi.org/10.1007/s40819-022-01365-7
  • Khan, N.U., Husain, S., A note on extended beta function involving generalized Mittag-Leffler function and its applications, TWMS J. of Appl. and Eng. Math., 12(1) (2022), 71–81.
  • Kumar, P., Singh, S.P., Dragomir, S.S., Some inequalities involving beta and gamma functions, Nonlinear Analysis Forum, 6(1) (2001), 143–150.
  • Luke, Y.L., The Special Functions and Their Approximations, Academic Press, New York, 1969.
  • Özergin, E., Özarslan, M.A., Altin, A., Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235(16) (2011), 4601–4610. https://doi.org/10.1016/j.cam.2010.04.019
  • Rainville, E.D., Special Functions, The Macmillan Co. Inc., New York, 1960.
  • Raissouli, M., Chergui, M., On a new parameterized beta function, Proc. of the Institute of Math. and Mechanics, National Academy of Sciences of Azerbaijan, 48(1) (2022), 132–139. https://doi.org/10.30546/2409-4994.48.1.2022.132
  • Saif, M., Khan, F., Nisar, K.S., Araci, S., Modified Laplace transform and its properties, J. Math. Computer Sci., 21(2) (2020), 127–135. https://doi.org/ 10.22436/jmcs.021.02.04
Year 2024, Volume: 73 Issue: 2, 306 - 318, 21.06.2024
https://doi.org/10.31801/cfsuasmas.1260059

Abstract

References

  • Andrews, G.E., Askey, R., Roy, R., Special Functions, Cambridge University Press, Cambridge, 1999.
  • Chaudhry, M.A., Zubair, S.M., Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55(1) (1994), 99–123. https://doi.org/10.1016/0377-0427(94)90187-2
  • Chaudhry, M.A., Qadir, A., Rafique, M., Zubair, S.M., Extension of Euler’s beta function, J. Comput. Appl. Math., 78 (1997), 19–32. https://doi.org/10.1016/S0377-0427(96)00102-1
  • Chaudhry, M.A., Qadir, A., Srivastava, H.M., Paris, R.B., Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589–602. https://doi.org/10.1016/j.amc.2003.09.017
  • Choi, J., Rathie, A.K., Parmar, R.K., Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Mathematical J., 36(2) (2014), 357–385. https://doi.org/ 10.5831/hmj.2014.36.2.357
  • Kaba, D.G., On some inequalities satisfied by beta and gamma functions, South African Statistical Journal, 12(1) (1978), 25–31.
  • Khan, N.U., Aman, M., Usman, T., Extended beta, hypergeometric and confluent hypergeometric functions via multi-index Mittag-Leffler function, Proc. of the Jangjeon Mathematical Society, 25(1) (2022), 43–58. https://doi.org/ 10.17777/pjms2022.25.1.43
  • Khan, N.U., Khan, M. I., Khan, O., Evaluation of transforms and fractional calculus of new extended Wright function, Int. J. Appl. Comput. Math., 8(4) (2022), 163. https://doi.org/10.1007/s40819-022-01365-7
  • Khan, N.U., Husain, S., A note on extended beta function involving generalized Mittag-Leffler function and its applications, TWMS J. of Appl. and Eng. Math., 12(1) (2022), 71–81.
  • Kumar, P., Singh, S.P., Dragomir, S.S., Some inequalities involving beta and gamma functions, Nonlinear Analysis Forum, 6(1) (2001), 143–150.
  • Luke, Y.L., The Special Functions and Their Approximations, Academic Press, New York, 1969.
  • Özergin, E., Özarslan, M.A., Altin, A., Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235(16) (2011), 4601–4610. https://doi.org/10.1016/j.cam.2010.04.019
  • Rainville, E.D., Special Functions, The Macmillan Co. Inc., New York, 1960.
  • Raissouli, M., Chergui, M., On a new parameterized beta function, Proc. of the Institute of Math. and Mechanics, National Academy of Sciences of Azerbaijan, 48(1) (2022), 132–139. https://doi.org/10.30546/2409-4994.48.1.2022.132
  • Saif, M., Khan, F., Nisar, K.S., Araci, S., Modified Laplace transform and its properties, J. Math. Computer Sci., 21(2) (2020), 127–135. https://doi.org/ 10.22436/jmcs.021.02.04
There are 15 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Nabiullah Khan 0000-0003-0389-7899

Mohammad Iqbal Khan 0000-0001-5469-1976

Mohd Saif 0000-0002-2719-6002

Talha Usman 0000-0002-4208-6784

Publication Date June 21, 2024
Submission Date March 4, 2023
Acceptance Date November 21, 2023
Published in Issue Year 2024 Volume: 73 Issue: 2

Cite

APA Khan, N., Khan, M. I., Saif, M., Usman, T. (2024). Certain results concerning (p, q)-parameterized beta logarithmic function and their properties. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(2), 306-318. https://doi.org/10.31801/cfsuasmas.1260059
AMA Khan N, Khan MI, Saif M, Usman T. Certain results concerning (p, q)-parameterized beta logarithmic function and their properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2024;73(2):306-318. doi:10.31801/cfsuasmas.1260059
Chicago Khan, Nabiullah, Mohammad Iqbal Khan, Mohd Saif, and Talha Usman. “Certain Results Concerning (p, Q)-Parameterized Beta Logarithmic Function and Their Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 2 (June 2024): 306-18. https://doi.org/10.31801/cfsuasmas.1260059.
EndNote Khan N, Khan MI, Saif M, Usman T (June 1, 2024) Certain results concerning (p, q)-parameterized beta logarithmic function and their properties. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 2 306–318.
IEEE N. Khan, M. I. Khan, M. Saif, and T. Usman, “Certain results concerning (p, q)-parameterized beta logarithmic function and their properties”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 2, pp. 306–318, 2024, doi: 10.31801/cfsuasmas.1260059.
ISNAD Khan, Nabiullah et al. “Certain Results Concerning (p, Q)-Parameterized Beta Logarithmic Function and Their Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/2 (June 2024), 306-318. https://doi.org/10.31801/cfsuasmas.1260059.
JAMA Khan N, Khan MI, Saif M, Usman T. Certain results concerning (p, q)-parameterized beta logarithmic function and their properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:306–318.
MLA Khan, Nabiullah et al. “Certain Results Concerning (p, Q)-Parameterized Beta Logarithmic Function and Their Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 2, 2024, pp. 306-18, doi:10.31801/cfsuasmas.1260059.
Vancouver Khan N, Khan MI, Saif M, Usman T. Certain results concerning (p, q)-parameterized beta logarithmic function and their properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(2):306-18.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.