On the Jacobsthal numbers which are the product of two Modified Pell numbers
Year 2024,
Volume: 73 Issue: 3, 604 - 610, 27.09.2024
Ahmet Daşdemir
,
Mehmet Varol
Abstract
This paper presents an analytic study of determining all the possible solutions of the Diophantine equations such that $ {q_k} = {J_m} {J_n} $ and $ {J_k} = {q_m} {q_n} $. These give intersections of the Modified Pell and Jacobsthal numbers too for the case where $ m = 1 $ or $ n = 1 $.
References
- Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Courier Corporation, New York, 2008.
- Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- Horadam, A. F., Applications of modified Pell numbers to representations, Ulam Quarterly, 3(1) (1994), 34–53.
- Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart., 34(1) (1996), 40–54.
- Daşdemir, A., On the Pell, Pell-Lucas and Modified Pell numbers by matrix method, Applied Mathematical Sciences, 5(64) (2011), 3173–3181.
- Daşdemir, A., On the Jacobsthal numbers by matrix method, SDU Journal of Science Journal of Science, 7(1) (2012), 69–76.
- Daşdemir, A., A study on the Jacobsthal and Jacobsthal-Lucas numbers by matrix method, DUFED Journal of Sciences, 3(1) (2014), 13–18.
- Arslan, S., Köken, F., The Jacobsthal and Jacobsthal-Lucas numbers via square roots of matrices, Int. Math. Forum., 11(11) (2016), 513–520. http://doi.org/10.12988/imf.2016.6442
- Catarino, P., Campos, H., A note on Gaussian Modified Pell numbers, Journal of Information and Optimization Sciences, 39(6) (2018), 1363–1371. http://doi.org/10.1080/02522667.2018.1471267
- Radicic, B., On k-circulant matrices involving the Pell numbers, Results in Mathematics, 74(4) (2019), 200. https://doi.org/10.1007/s00025-019-1121-9
- Daşdemir, A., Mersene, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts, Acta Math. Univ. Comenian., 88(1) (2019), 142–156.
- Soykan, Y., Göcen, M., Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26(4) (2020), 136–153. http://doi.org/10.7546/nntdm.2020.26.4.136-153
- Uygun, S¸., The relations between bi-periodic Jacobsthal and bi-periodic Jacobsthal Lucas sequence, Cumhuriyet Science Journal, 42(2) (2021), 346–357. http://doi.org/10.17776/csj.770080
- Matveev, E. M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, II. Izv. Math., 64(6) (2000), 1217–1269. http://doi.org/10.1070/IM2000v064n06ABEH000314
- Baker, A., Davenport, H., The equations $3x^2 − 2 = y^2$ and $8x^2 − 7 = z^2$, Quart. J. Math. Oxford Ser., 20(1) (1969), 129–137.
- Dujella, A., Pethö, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49(195) (1998), 291–306. https://doi.org/10.1093/qjmath/49.195.291
Year 2024,
Volume: 73 Issue: 3, 604 - 610, 27.09.2024
Ahmet Daşdemir
,
Mehmet Varol
References
- Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Courier Corporation, New York, 2008.
- Koshy, T., Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- Horadam, A. F., Applications of modified Pell numbers to representations, Ulam Quarterly, 3(1) (1994), 34–53.
- Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart., 34(1) (1996), 40–54.
- Daşdemir, A., On the Pell, Pell-Lucas and Modified Pell numbers by matrix method, Applied Mathematical Sciences, 5(64) (2011), 3173–3181.
- Daşdemir, A., On the Jacobsthal numbers by matrix method, SDU Journal of Science Journal of Science, 7(1) (2012), 69–76.
- Daşdemir, A., A study on the Jacobsthal and Jacobsthal-Lucas numbers by matrix method, DUFED Journal of Sciences, 3(1) (2014), 13–18.
- Arslan, S., Köken, F., The Jacobsthal and Jacobsthal-Lucas numbers via square roots of matrices, Int. Math. Forum., 11(11) (2016), 513–520. http://doi.org/10.12988/imf.2016.6442
- Catarino, P., Campos, H., A note on Gaussian Modified Pell numbers, Journal of Information and Optimization Sciences, 39(6) (2018), 1363–1371. http://doi.org/10.1080/02522667.2018.1471267
- Radicic, B., On k-circulant matrices involving the Pell numbers, Results in Mathematics, 74(4) (2019), 200. https://doi.org/10.1007/s00025-019-1121-9
- Daşdemir, A., Mersene, Jacobsthal, and Jacobsthal-Lucas numbers with negative subscripts, Acta Math. Univ. Comenian., 88(1) (2019), 142–156.
- Soykan, Y., Göcen, M., Properties of hyperbolic generalized Pell numbers, Notes on Number Theory and Discrete Mathematics, 26(4) (2020), 136–153. http://doi.org/10.7546/nntdm.2020.26.4.136-153
- Uygun, S¸., The relations between bi-periodic Jacobsthal and bi-periodic Jacobsthal Lucas sequence, Cumhuriyet Science Journal, 42(2) (2021), 346–357. http://doi.org/10.17776/csj.770080
- Matveev, E. M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, II. Izv. Math., 64(6) (2000), 1217–1269. http://doi.org/10.1070/IM2000v064n06ABEH000314
- Baker, A., Davenport, H., The equations $3x^2 − 2 = y^2$ and $8x^2 − 7 = z^2$, Quart. J. Math. Oxford Ser., 20(1) (1969), 129–137.
- Dujella, A., Pethö, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49(195) (1998), 291–306. https://doi.org/10.1093/qjmath/49.195.291