Research Article
BibTex RIS Cite
Year 2024, Volume: 73 Issue: 3, 705 - 711, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1474890

Abstract

References

  • Aytar, S., Pehlivan. S., Statistically monotonic and statistically bounded sequences of fuzzy numbers, Infor. Sci., 176(6) (2006), 734-744. https://doi.org/10.1016/j.ins.2005.03.015
  • Balaz V., Salat, T., Uniform density $u$ and corresponding $I_u$- convergence, Math. Commun., 11 (2006), 1-7.
  • Balcerzak, M., Glab, S., Wachowicz, A., Qualitative properties of ideal convergent subsequences and rearrangements Acta Math. Hungar., 150 (2016), 312-323. https://doi.org/10.1007/s10474-016-0644-8
  • Balcerzak, M., Leonetti, P., On the relationship between ideal cluster points and ideal limit points, Topology Appl., 252 (2019), 178-190. https://doi.org/10.1016/J.TOPOL.2018.11.022
  • Bhardwaj, V. K., Gupta, S., On some generalizations of statistical boundedness, Journal of Ineq. And Applications, 12 (2014). https://doi.org/10.1186/1029-242X-2014-12
  • Demirci, K., I-limit superior and inferior, Math. Commun., 6 (2001), 165-172.
  • Farah, I., Analytic Quotients, Theory of Lifting for Quotients Over Analytic Ideals on Integers, Mem. Amer. Math. Soc., 148 (2000), ISSN 0065-9266
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. EUDML-ID : urn:eudml:doc:209960
  • Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192. https://doi.org/10.1090/S0002-9939-1993-1181163-6
  • Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125(12) (1997), 3625-3631. https://doi.org/10.1090/S0002-9939-97-04000-8
  • Kostyrko, P., Salat T., Wilczynski, W., I-convergence, Real Anal. Exchange, 26 (2000/2001), 669-686. MathSciNet: MR1844385
  • Leonetti, P., Miller, H. I., Miller-Wan Wieren, L. , Duality between measure and category of almost all subsequences of a given sequences, Period. Math. Hungar., 78 (2019), 152-156. https://doi.org/10.1007/s10998-018-0255
  • Miller, H. I., Orhan, C., On almost convergent and statistically convergent subsequences, Acta. Math. Hungar., 93 (2001), 135-151. https://doi.org/10.1023/A:1013877718406
  • Miller, H. I., Miller-Van Wieren, L., Some statistical cluster point theorems, Hacet. J. Math. Stat., 44 (2015), 1405-1409. https://doi.org/10.15672/HJMS.201544967
  • Miller, H. I., Miller-Van Wieren, L., Statistical cluster point and statistical limit point sets of subsequences of a given sequence, Hacet. J. Math. Stat., 49 (2020) 494 - 497. https://doi.org/10.15672/hujms.712019
  • Miller-Van Wieren, L., Subsequence characterization of statistical boundedness, Turk. J. Math., 46 (8) (2022), 3400-3407. https://doi.org/10.55730/1300-0098.3340
  • Miller-Van Wieren, L., Taş, E., Yurdakadim, T., Category theoretical view of I-cluster and I-limit points of subsequences, Acta Comment. Univ. Tartu. Math., 24(1) (2020), 103-108. https://doi.org/10.12697/acutm.2020.24.07
  • Miller-Van Wieren, L., Taş, E., Yurdakadim, T., Some new insights into ideal convergence and subsequences, Hacet. J. Math. Stat., 51(5) (2022), 1379-1384. https://doi.org/10.15672/hujms.1087633
  • Miller-Van Wieren, L., Yurdakadim, T., A note on uniform statistical limit points, Math. Reports, 24(74) (2022), 771-779.
  • Tripathy, B. C., On statistically convergent and statistically bounded sequences, Bull. of Malaysian Math. Soc., 20(1) (1997), 31-33.
  • Yurdakadim, T., Miller-Van Wieren, L., Subsequential results on uniform statistical convergence, Sarajevo J. Math., 12 (2016), 1-9. https://doi.org/10.5644/SJM.12.2.10
  • Yurdakadim, T., Miller-Wan Wieren, L., Some results on uniform statistical cluster points, Turk. J. Math., 41 (2017), 1133-1139. https://doi.org/10.3906/MAT-1607-21
  • Zeager, J., Buck-type theorems for statistical convergence, Radovi Mat., 9 (1999), 59-69.

On ideal bounded sequences

Year 2024, Volume: 73 Issue: 3, 705 - 711, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1474890

Abstract

In this paper, we study the notion of ideal bounded sequences, related to a given ideal, generalizing an earlier concept known as statistical boundedness of a sequence. We proceed to prove some results connecting ideal boundedness of a sequence to that of its subsequences. For this purpose, we use Lebesgue measure and Baire category to measure size.

References

  • Aytar, S., Pehlivan. S., Statistically monotonic and statistically bounded sequences of fuzzy numbers, Infor. Sci., 176(6) (2006), 734-744. https://doi.org/10.1016/j.ins.2005.03.015
  • Balaz V., Salat, T., Uniform density $u$ and corresponding $I_u$- convergence, Math. Commun., 11 (2006), 1-7.
  • Balcerzak, M., Glab, S., Wachowicz, A., Qualitative properties of ideal convergent subsequences and rearrangements Acta Math. Hungar., 150 (2016), 312-323. https://doi.org/10.1007/s10474-016-0644-8
  • Balcerzak, M., Leonetti, P., On the relationship between ideal cluster points and ideal limit points, Topology Appl., 252 (2019), 178-190. https://doi.org/10.1016/J.TOPOL.2018.11.022
  • Bhardwaj, V. K., Gupta, S., On some generalizations of statistical boundedness, Journal of Ineq. And Applications, 12 (2014). https://doi.org/10.1186/1029-242X-2014-12
  • Demirci, K., I-limit superior and inferior, Math. Commun., 6 (2001), 165-172.
  • Farah, I., Analytic Quotients, Theory of Lifting for Quotients Over Analytic Ideals on Integers, Mem. Amer. Math. Soc., 148 (2000), ISSN 0065-9266
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. EUDML-ID : urn:eudml:doc:209960
  • Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192. https://doi.org/10.1090/S0002-9939-1993-1181163-6
  • Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125(12) (1997), 3625-3631. https://doi.org/10.1090/S0002-9939-97-04000-8
  • Kostyrko, P., Salat T., Wilczynski, W., I-convergence, Real Anal. Exchange, 26 (2000/2001), 669-686. MathSciNet: MR1844385
  • Leonetti, P., Miller, H. I., Miller-Wan Wieren, L. , Duality between measure and category of almost all subsequences of a given sequences, Period. Math. Hungar., 78 (2019), 152-156. https://doi.org/10.1007/s10998-018-0255
  • Miller, H. I., Orhan, C., On almost convergent and statistically convergent subsequences, Acta. Math. Hungar., 93 (2001), 135-151. https://doi.org/10.1023/A:1013877718406
  • Miller, H. I., Miller-Van Wieren, L., Some statistical cluster point theorems, Hacet. J. Math. Stat., 44 (2015), 1405-1409. https://doi.org/10.15672/HJMS.201544967
  • Miller, H. I., Miller-Van Wieren, L., Statistical cluster point and statistical limit point sets of subsequences of a given sequence, Hacet. J. Math. Stat., 49 (2020) 494 - 497. https://doi.org/10.15672/hujms.712019
  • Miller-Van Wieren, L., Subsequence characterization of statistical boundedness, Turk. J. Math., 46 (8) (2022), 3400-3407. https://doi.org/10.55730/1300-0098.3340
  • Miller-Van Wieren, L., Taş, E., Yurdakadim, T., Category theoretical view of I-cluster and I-limit points of subsequences, Acta Comment. Univ. Tartu. Math., 24(1) (2020), 103-108. https://doi.org/10.12697/acutm.2020.24.07
  • Miller-Van Wieren, L., Taş, E., Yurdakadim, T., Some new insights into ideal convergence and subsequences, Hacet. J. Math. Stat., 51(5) (2022), 1379-1384. https://doi.org/10.15672/hujms.1087633
  • Miller-Van Wieren, L., Yurdakadim, T., A note on uniform statistical limit points, Math. Reports, 24(74) (2022), 771-779.
  • Tripathy, B. C., On statistically convergent and statistically bounded sequences, Bull. of Malaysian Math. Soc., 20(1) (1997), 31-33.
  • Yurdakadim, T., Miller-Van Wieren, L., Subsequential results on uniform statistical convergence, Sarajevo J. Math., 12 (2016), 1-9. https://doi.org/10.5644/SJM.12.2.10
  • Yurdakadim, T., Miller-Wan Wieren, L., Some results on uniform statistical cluster points, Turk. J. Math., 41 (2017), 1133-1139. https://doi.org/10.3906/MAT-1607-21
  • Zeager, J., Buck-type theorems for statistical convergence, Radovi Mat., 9 (1999), 59-69.
There are 23 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Leila Miller-van Wieren 0000-0002-7621-9231

Publication Date September 27, 2024
Submission Date April 28, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 73 Issue: 3

Cite

APA Miller-van Wieren, L. (2024). On ideal bounded sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 705-711. https://doi.org/10.31801/cfsuasmas.1474890
AMA Miller-van Wieren L. On ideal bounded sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):705-711. doi:10.31801/cfsuasmas.1474890
Chicago Miller-van Wieren, Leila. “On Ideal Bounded Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 705-11. https://doi.org/10.31801/cfsuasmas.1474890.
EndNote Miller-van Wieren L (September 1, 2024) On ideal bounded sequences. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 705–711.
IEEE L. Miller-van Wieren, “On ideal bounded sequences”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 705–711, 2024, doi: 10.31801/cfsuasmas.1474890.
ISNAD Miller-van Wieren, Leila. “On Ideal Bounded Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 705-711. https://doi.org/10.31801/cfsuasmas.1474890.
JAMA Miller-van Wieren L. On ideal bounded sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:705–711.
MLA Miller-van Wieren, Leila. “On Ideal Bounded Sequences”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 705-11, doi:10.31801/cfsuasmas.1474890.
Vancouver Miller-van Wieren L. On ideal bounded sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):705-11.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.