Research Article
BibTex RIS Cite

The dependency of the analytical and numerical solution on the $\varepsilon$ parameter in hyperbolic and pseudo-hyperbolic problems with inverse coefficients

Year 2024, Volume: 73 Issue: 4, 1171 - 1196, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1475286

Abstract

The aim of this study is to analyze the behavior of $\varepsilon$ on the solution of an inverse coefficient nonlinear pseudo-hyperbolic equation $w_{tt}-\varepsilon w_{xxtt}-\varepsilon w_{xx}=\theta (t)f(x,t,w)$ with periodic boundary conditions. We also consider the inverse coefficient problem
$w_{tt}-w_{xx}=\theta (t)f(x,t,w).$ The solution function of nonlinear pseudo-hyperbolic equation is found to be convergent to the solution function of nonlinear hyperbolic equation, when $ \varepsilon \rightarrow 0$ is proved. The Fourier method was used to illustrate the theoretically relation between the inverse problems while the Finite Difference Method was used numerically. In order to get more accurate numerical solution higher precision schemes have been applied in implicit finite difference equation. The cases where $\varepsilon =0$ and $\varepsilon \neq 0$ have been solved analytically and numerically, and compared each other.

References

  • Afshar, S., Soltanalizadeh, B., Solution of the two-dimensional second-order diffusion equation with nonlocal boundary condition, Int. J. Pure Appl. Math, 94(2) (2014), 119-131. http://dx.doi.org/10.12732/ijpam.v94i2.1
  • Antunes, A. J., Leal-Toledo, R. C., da Silveira Filho, O. T., Toledo, E. M., Finite difference method for solving acoustic wave equation using locally adjustable time-steps, Procedia Computer Science, 29 (2014), 627-636. https://doi.org/10.1016/j.procs.2014.05.056
  • Aslan, E., Taymaz, I., Çakir, K., Kahveci, E. E., Numerical and experimental investigation of tube bundle heat exchanger arrangement effect on heat transfer performance in turbulent flows, Isı Bilimi ve Tekniği Dergisi, 43(2) (2023), 175-190. https://doi.org/10.47480/isibted.1391408
  • Aslan, E., Numerical investigation of the heat transfer and pressure drop on tube bundle support plates for inline and staggered arrangements, Progress in Computational Fluid Dynamics, an International Journal, 16(1) (2016), 38-47. https://doi.org/10.1504/PCFD.2016.074249
  • Baglan, I., Akdemir, A. O., Dokuyucu, M. A., Inverse coefficient problem for quasilinear pseudo-parabolic equation by Fourier method, Filomat, 37(21) (2023), 7217-7230. https://doi.org./10.2298/FIL2321217B
  • Bağlan, İ., Canel, T., Analysis of inverse Euler-Bernoulli equation with periodic boundary conditions, Turkish Journal of Science, 7(3) (2022), 146-156.
  • Bağlan, İ., Canel, T., Fourier method for higher order quasi-linear parabolic equation subject with periodic boundary conditions, Turkish Journal of Science, 6(3) (2021), 148-155.
  • Baglan, I., Determination of a coefficient in a quasilinear parabolic equation with periodic boundary condition, Inverse Problems in Science and Engineering, 23(5) (2015), 884-900. https://doi.org/10.1080/17415977.2014.947479
  • Bellassoued, M., Aicha, I. B., An inverse problem of finding two time-dependent coefficients in second order hyperbolic equations from Dirichlet to Neumann map, Journal of Mathematical Analysis and Applications, 475(2) (2019), 1658-1684. https://doi.org/10.1016/j.jmaa.2019.03.038
  • Benim, A. C., Diederich, M., Pfeiffelmann, B., Aerodynamic optimization of airfoil profiles for small horizontal axis wind turbines, Computation, 6(2) (2018), 34. https://doi.org/10.3390/computation6020034
  • Benim, A. C., Zinser, W. A., Segregated formulation of Navier-Stokes equations with finite elements, Comput. Methods Appl. Mech. Engineering, 57 (1986), 223-237. https://doi.org/10.1016/0045-7825(86)90015-0
  • Benim, A. C., Zinser, W., Investigation into the finite element analysis of confined turbulent flows using a k − ϵ model of turbulence, Computer Methods in Applied Mechanics and Engineering, 51(1-3) (1985), 507-523. https://doi.org/10.1016/0045-7825(85)90045-3
  • Benim, A. C., Finite element analysis of confined turbulent swirling flows, Int. J. Num. Meth. Fluids, 11 (1990), 697-717. https://doi.org/10.1002/fld.1650110602
  • Bhattacharyya, S., Benim, A. C., Chattopadhyay, H., Banerjee, A., Experimental and numerical analysis of forced convection in a twisted tube, Thermal Science, 23 (2019), 1043–1052. https://doi.org/10.2298/TSCI19S4043B
  • Bhattacharyya, S., Benim, A. C., Pathak, M., Chamoli, S., Gupta, A., Thermohydraulic characteristics of inline and staggered angular cut baffle inserts in the turbulent flow regime, Journal of Thermal Analysis and Calorimetry, 140 (2020), 1519–1536. https://doi.org/10.1007/s10973-019-09094-8
  • Biswas, N., Manna, N. K., Datta, A., Mandal, D. K., Benim, A. C., Role of aspiration to enhance MHD convection in protruded heater cavity, Progress in Computational Fluid Dynamics, an International Journal, 20(6) (2020), 363-378. https://doi.org/10.1504/PCFD.2020.111408
  • Cao, Y., Yin, J., Wang, C., Cauchy problems of semilinear pseudo-parabolic equations, Journal of Differential Equations, 246(12) (2009), 4568-4590. https://doi.org/10.1016/j.jde.2009.03.021
  • Ciftci, I., Halilov, H., Dependency of the solution of quasilinear pseudo-parabolic equation with periodic boundary condition on ϵ, Int. Journal of Math. Analysis, 2(18) (2008), 881–888.
  • Courant, R., Hilbert, D., Methods of Mathematical Physics: Partial Differential Equations, John Wiley & Sons, 2008.
  • Damseh, R. A., Tahat, M. S. and Benim, A. C., Nonsimilar solutions of magnetohydrody-namic and thermophoresis particle deposition on mixed convection problem in porous media along a vertical surface with variable wall temperature, Progress in Computational Fluid Dynamics, an International Journal, 9(1) (2009), 58-65. https://doi.org/10.1504/PCFD.2009.022309
  • Dimova, M., Kolkovska, N., Kutev, N., Global behavior of the solutions to nonlinear wave equations with combined power-type nonlinearities with variable coefficients, Nonlinear Analysis, 242 (2024), 113504. https://doi.org/10.1016/j.na.2024.113504
  • Djidjeli, K., Price, W. G., Twizell, E. H., Wang, Y., Numerical methods for the solution of the third and fifth-order dispersive Korteweg-de Vries equations, Journal of Computational and Applied Mathematics, 58(3) (1995), 307-336. https://doi.org/10.1016/0377-0427(94)00005-L
  • Dmitriev, V. G., Danilin, A. N., Popova, A. R., Pshenichnova, N. V., Numerical analysis of deformation characteristics of elastic inhomogeneous rotational shells at arbitrary displacements and rotation angles, Computation, 10(10) (2022), 184. https://doi.org/10.3390/computation10100184
  • Evans, L. C., Partial Differential Equations, 2nd ed., American Mathematical Society, CA, 2022.
  • Floridia, G., Takase, H., Inverse problems for first-order hyperbolic equations with time-dependent coefficients, Journal of Differential Equations, 305 (2021), 45-71. https://doi.org/10.1016/j.jde.2021.10.007
  • Halilov, H., Güler, B. O., Kutlu, K., Dependency of the solution of a class of quartic partial differential quasilinear equation with periodic boundary condition on ε, Gen, 28(1) (2015), 59-71.
  • Huang, M., Wang, Y., Shao, Z., Piston problem for the generalized Chaplygin Euler equations of compressible fluid flow, Chinese Journal of Physics, (2023). https://doi.org/10.1016/j.cjph.2023.08.015
  • Ionkin, N. I., The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differentsial’nye Uravneniya, 13(2) (1977), 294-304.
  • Katbeh, J., Masad, E., Roja, K. L., Srinivasa, A., A framework for the analysis of dam-age and healing viscoelastic behaviour of asphalt binders, Construction and Building Materials, 374 (2023), 130908. https://doi.org/10.1016/j.conbuildmat.2023.130908
  • Kostin, I., Panasenko, G., Khokhlov–Zabolotskaya–Kuznetsov type equation: nonlinear acoustics in heterogeneous media. Comptes rendus, M´ecanique, 334(4) (2006), 220-224. DOI:10.1016/j.crme.2006.01.010
  • Liu, S., Triggiani, R., Global uniqueness and stability in determining the damping and potential coefficients of an inverse hyperbolic problem, Nonlinear Analysis: Real World Applications, 12(3) (2011), 1562-1590. https://doi.org/10.1016/j.nonrwa.2010.10.014
  • Mehraliyev, Y. T., Ramazanova, A. T., Huntul, M. J., An inverse boundary value problem for a two-dimensional pseudo-parabolic equation of third order, Results in Applied Mathematics, 14 (2022), 100274. https://doi.org/10.1016/j.rinam.2022.100274
  • Shu, T., Yang, K., Liu, Y., Feng, B., Wu, C., Wave-equation traveltime slope inversion by combining finite difference and crosscorrelation methods, Journal of Applied Geophysics, 206 (2022), 104817. https://doi.org/10.1016/j.jappgeo.2022.104817
  • Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, 1985.
  • Song, J., Zhong, M., Karniadakis, G. E., Yan, Z., Two-stage initial-value iterative physics informed neural networks for simulating solitary waves of nonlinear wave equations, Journal of Computational Physics, 505 (2024), 112917. https://doi.org/10.1016/j.jcp.2024.112917
  • Versteeg, H. K., Malalasekera, W., An Introduction to Computational Fluid Dynamics, 2nd ed. Pearson Prentice Hall, London, 2007.
  • Xia, J. L., Smith, B. L., Benim, A. C., Schmidli, J., Yadigaroglu, G., Effect of inlet and outlet boundary conditions on swirling flows, Computers & Fluids, 26 (1997), 811–823. https://doi.org/10.1016/S0045-7930(97)00026-1
  • Xu, J., Xie, S., Fu, H., A two-grid block-centered finite difference method for the nonlinear regularized long wave equation, Applied Numerical Mathematics, 171 (2022), 128-148. https://doi.org/10.1016/j.apnum.2021.08.008
  • Zhang, Y., Pang, Y., Wang, J., Concentration and cavitation in the vanishing pressure limit of solutions to the generalized Chaplygin Euler equations of compressible fluid flow, European Journal of Mechanics-B/Fluids, 78 (2019), 252-262. https://doi.org/10.1016/j.euromechflu.2019.103515
Year 2024, Volume: 73 Issue: 4, 1171 - 1196, 30.12.2024
https://doi.org/10.31801/cfsuasmas.1475286

Abstract

References

  • Afshar, S., Soltanalizadeh, B., Solution of the two-dimensional second-order diffusion equation with nonlocal boundary condition, Int. J. Pure Appl. Math, 94(2) (2014), 119-131. http://dx.doi.org/10.12732/ijpam.v94i2.1
  • Antunes, A. J., Leal-Toledo, R. C., da Silveira Filho, O. T., Toledo, E. M., Finite difference method for solving acoustic wave equation using locally adjustable time-steps, Procedia Computer Science, 29 (2014), 627-636. https://doi.org/10.1016/j.procs.2014.05.056
  • Aslan, E., Taymaz, I., Çakir, K., Kahveci, E. E., Numerical and experimental investigation of tube bundle heat exchanger arrangement effect on heat transfer performance in turbulent flows, Isı Bilimi ve Tekniği Dergisi, 43(2) (2023), 175-190. https://doi.org/10.47480/isibted.1391408
  • Aslan, E., Numerical investigation of the heat transfer and pressure drop on tube bundle support plates for inline and staggered arrangements, Progress in Computational Fluid Dynamics, an International Journal, 16(1) (2016), 38-47. https://doi.org/10.1504/PCFD.2016.074249
  • Baglan, I., Akdemir, A. O., Dokuyucu, M. A., Inverse coefficient problem for quasilinear pseudo-parabolic equation by Fourier method, Filomat, 37(21) (2023), 7217-7230. https://doi.org./10.2298/FIL2321217B
  • Bağlan, İ., Canel, T., Analysis of inverse Euler-Bernoulli equation with periodic boundary conditions, Turkish Journal of Science, 7(3) (2022), 146-156.
  • Bağlan, İ., Canel, T., Fourier method for higher order quasi-linear parabolic equation subject with periodic boundary conditions, Turkish Journal of Science, 6(3) (2021), 148-155.
  • Baglan, I., Determination of a coefficient in a quasilinear parabolic equation with periodic boundary condition, Inverse Problems in Science and Engineering, 23(5) (2015), 884-900. https://doi.org/10.1080/17415977.2014.947479
  • Bellassoued, M., Aicha, I. B., An inverse problem of finding two time-dependent coefficients in second order hyperbolic equations from Dirichlet to Neumann map, Journal of Mathematical Analysis and Applications, 475(2) (2019), 1658-1684. https://doi.org/10.1016/j.jmaa.2019.03.038
  • Benim, A. C., Diederich, M., Pfeiffelmann, B., Aerodynamic optimization of airfoil profiles for small horizontal axis wind turbines, Computation, 6(2) (2018), 34. https://doi.org/10.3390/computation6020034
  • Benim, A. C., Zinser, W. A., Segregated formulation of Navier-Stokes equations with finite elements, Comput. Methods Appl. Mech. Engineering, 57 (1986), 223-237. https://doi.org/10.1016/0045-7825(86)90015-0
  • Benim, A. C., Zinser, W., Investigation into the finite element analysis of confined turbulent flows using a k − ϵ model of turbulence, Computer Methods in Applied Mechanics and Engineering, 51(1-3) (1985), 507-523. https://doi.org/10.1016/0045-7825(85)90045-3
  • Benim, A. C., Finite element analysis of confined turbulent swirling flows, Int. J. Num. Meth. Fluids, 11 (1990), 697-717. https://doi.org/10.1002/fld.1650110602
  • Bhattacharyya, S., Benim, A. C., Chattopadhyay, H., Banerjee, A., Experimental and numerical analysis of forced convection in a twisted tube, Thermal Science, 23 (2019), 1043–1052. https://doi.org/10.2298/TSCI19S4043B
  • Bhattacharyya, S., Benim, A. C., Pathak, M., Chamoli, S., Gupta, A., Thermohydraulic characteristics of inline and staggered angular cut baffle inserts in the turbulent flow regime, Journal of Thermal Analysis and Calorimetry, 140 (2020), 1519–1536. https://doi.org/10.1007/s10973-019-09094-8
  • Biswas, N., Manna, N. K., Datta, A., Mandal, D. K., Benim, A. C., Role of aspiration to enhance MHD convection in protruded heater cavity, Progress in Computational Fluid Dynamics, an International Journal, 20(6) (2020), 363-378. https://doi.org/10.1504/PCFD.2020.111408
  • Cao, Y., Yin, J., Wang, C., Cauchy problems of semilinear pseudo-parabolic equations, Journal of Differential Equations, 246(12) (2009), 4568-4590. https://doi.org/10.1016/j.jde.2009.03.021
  • Ciftci, I., Halilov, H., Dependency of the solution of quasilinear pseudo-parabolic equation with periodic boundary condition on ϵ, Int. Journal of Math. Analysis, 2(18) (2008), 881–888.
  • Courant, R., Hilbert, D., Methods of Mathematical Physics: Partial Differential Equations, John Wiley & Sons, 2008.
  • Damseh, R. A., Tahat, M. S. and Benim, A. C., Nonsimilar solutions of magnetohydrody-namic and thermophoresis particle deposition on mixed convection problem in porous media along a vertical surface with variable wall temperature, Progress in Computational Fluid Dynamics, an International Journal, 9(1) (2009), 58-65. https://doi.org/10.1504/PCFD.2009.022309
  • Dimova, M., Kolkovska, N., Kutev, N., Global behavior of the solutions to nonlinear wave equations with combined power-type nonlinearities with variable coefficients, Nonlinear Analysis, 242 (2024), 113504. https://doi.org/10.1016/j.na.2024.113504
  • Djidjeli, K., Price, W. G., Twizell, E. H., Wang, Y., Numerical methods for the solution of the third and fifth-order dispersive Korteweg-de Vries equations, Journal of Computational and Applied Mathematics, 58(3) (1995), 307-336. https://doi.org/10.1016/0377-0427(94)00005-L
  • Dmitriev, V. G., Danilin, A. N., Popova, A. R., Pshenichnova, N. V., Numerical analysis of deformation characteristics of elastic inhomogeneous rotational shells at arbitrary displacements and rotation angles, Computation, 10(10) (2022), 184. https://doi.org/10.3390/computation10100184
  • Evans, L. C., Partial Differential Equations, 2nd ed., American Mathematical Society, CA, 2022.
  • Floridia, G., Takase, H., Inverse problems for first-order hyperbolic equations with time-dependent coefficients, Journal of Differential Equations, 305 (2021), 45-71. https://doi.org/10.1016/j.jde.2021.10.007
  • Halilov, H., Güler, B. O., Kutlu, K., Dependency of the solution of a class of quartic partial differential quasilinear equation with periodic boundary condition on ε, Gen, 28(1) (2015), 59-71.
  • Huang, M., Wang, Y., Shao, Z., Piston problem for the generalized Chaplygin Euler equations of compressible fluid flow, Chinese Journal of Physics, (2023). https://doi.org/10.1016/j.cjph.2023.08.015
  • Ionkin, N. I., The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differentsial’nye Uravneniya, 13(2) (1977), 294-304.
  • Katbeh, J., Masad, E., Roja, K. L., Srinivasa, A., A framework for the analysis of dam-age and healing viscoelastic behaviour of asphalt binders, Construction and Building Materials, 374 (2023), 130908. https://doi.org/10.1016/j.conbuildmat.2023.130908
  • Kostin, I., Panasenko, G., Khokhlov–Zabolotskaya–Kuznetsov type equation: nonlinear acoustics in heterogeneous media. Comptes rendus, M´ecanique, 334(4) (2006), 220-224. DOI:10.1016/j.crme.2006.01.010
  • Liu, S., Triggiani, R., Global uniqueness and stability in determining the damping and potential coefficients of an inverse hyperbolic problem, Nonlinear Analysis: Real World Applications, 12(3) (2011), 1562-1590. https://doi.org/10.1016/j.nonrwa.2010.10.014
  • Mehraliyev, Y. T., Ramazanova, A. T., Huntul, M. J., An inverse boundary value problem for a two-dimensional pseudo-parabolic equation of third order, Results in Applied Mathematics, 14 (2022), 100274. https://doi.org/10.1016/j.rinam.2022.100274
  • Shu, T., Yang, K., Liu, Y., Feng, B., Wu, C., Wave-equation traveltime slope inversion by combining finite difference and crosscorrelation methods, Journal of Applied Geophysics, 206 (2022), 104817. https://doi.org/10.1016/j.jappgeo.2022.104817
  • Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, 1985.
  • Song, J., Zhong, M., Karniadakis, G. E., Yan, Z., Two-stage initial-value iterative physics informed neural networks for simulating solitary waves of nonlinear wave equations, Journal of Computational Physics, 505 (2024), 112917. https://doi.org/10.1016/j.jcp.2024.112917
  • Versteeg, H. K., Malalasekera, W., An Introduction to Computational Fluid Dynamics, 2nd ed. Pearson Prentice Hall, London, 2007.
  • Xia, J. L., Smith, B. L., Benim, A. C., Schmidli, J., Yadigaroglu, G., Effect of inlet and outlet boundary conditions on swirling flows, Computers & Fluids, 26 (1997), 811–823. https://doi.org/10.1016/S0045-7930(97)00026-1
  • Xu, J., Xie, S., Fu, H., A two-grid block-centered finite difference method for the nonlinear regularized long wave equation, Applied Numerical Mathematics, 171 (2022), 128-148. https://doi.org/10.1016/j.apnum.2021.08.008
  • Zhang, Y., Pang, Y., Wang, J., Concentration and cavitation in the vanishing pressure limit of solutions to the generalized Chaplygin Euler equations of compressible fluid flow, European Journal of Mechanics-B/Fluids, 78 (2019), 252-262. https://doi.org/10.1016/j.euromechflu.2019.103515
There are 39 citations in total.

Details

Primary Language English
Subjects Numerical Solution of Differential and Integral Equations, Applied Mathematics (Other)
Journal Section Research Articles
Authors

Akbala Yernazar 0000-0002-0068-4954

Erman Aslan 0000-0001-8595-6092

İrem Bağlan 0000-0002-1877-9791

Publication Date December 30, 2024
Submission Date April 29, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2024 Volume: 73 Issue: 4

Cite

APA Yernazar, A., Aslan, E., & Bağlan, İ. (2024). The dependency of the analytical and numerical solution on the $\varepsilon$ parameter in hyperbolic and pseudo-hyperbolic problems with inverse coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 1171-1196. https://doi.org/10.31801/cfsuasmas.1475286
AMA Yernazar A, Aslan E, Bağlan İ. The dependency of the analytical and numerical solution on the $\varepsilon$ parameter in hyperbolic and pseudo-hyperbolic problems with inverse coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2024;73(4):1171-1196. doi:10.31801/cfsuasmas.1475286
Chicago Yernazar, Akbala, Erman Aslan, and İrem Bağlan. “The Dependency of the Analytical and Numerical Solution on the $\varepsilon$ Parameter in Hyperbolic and Pseudo-Hyperbolic Problems With Inverse Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 4 (December 2024): 1171-96. https://doi.org/10.31801/cfsuasmas.1475286.
EndNote Yernazar A, Aslan E, Bağlan İ (December 1, 2024) The dependency of the analytical and numerical solution on the $\varepsilon$ parameter in hyperbolic and pseudo-hyperbolic problems with inverse coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 4 1171–1196.
IEEE A. Yernazar, E. Aslan, and İ. Bağlan, “The dependency of the analytical and numerical solution on the $\varepsilon$ parameter in hyperbolic and pseudo-hyperbolic problems with inverse coefficients”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 4, pp. 1171–1196, 2024, doi: 10.31801/cfsuasmas.1475286.
ISNAD Yernazar, Akbala et al. “The Dependency of the Analytical and Numerical Solution on the $\varepsilon$ Parameter in Hyperbolic and Pseudo-Hyperbolic Problems With Inverse Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/4 (December 2024), 1171-1196. https://doi.org/10.31801/cfsuasmas.1475286.
JAMA Yernazar A, Aslan E, Bağlan İ. The dependency of the analytical and numerical solution on the $\varepsilon$ parameter in hyperbolic and pseudo-hyperbolic problems with inverse coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:1171–1196.
MLA Yernazar, Akbala et al. “The Dependency of the Analytical and Numerical Solution on the $\varepsilon$ Parameter in Hyperbolic and Pseudo-Hyperbolic Problems With Inverse Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 4, 2024, pp. 1171-96, doi:10.31801/cfsuasmas.1475286.
Vancouver Yernazar A, Aslan E, Bağlan İ. The dependency of the analytical and numerical solution on the $\varepsilon$ parameter in hyperbolic and pseudo-hyperbolic problems with inverse coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(4):1171-96.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.