Research Article
BibTex RIS Cite

An analysis on the shape-preserving characteristics of 𝜆-Schurer operators

Year 2024, Volume: 73 Issue: 4, 1153 - 1170
https://doi.org/10.31801/cfsuasmas.1537498

Abstract

This study investigates the shape-preserving characteristics of 𝜆-Schurer operators, a class of operators derived from a modified version of the classical Schurer bases by incorporating a shape parameter 𝜆. The primary focus is on understanding how these operators maintain the geometric features of the functions they approximate, which is crucial in fields like computer graphics and geometric modelling. By examining the fundamental properties and the divided differences associated with 𝜆-Schurer bases, we derive vital results that confirm the operators’ capability to preserve essential shape attributes under various conditions. The findings have significant implications for the application of these operators in computational analysis and other related areas, providing a solid foundation for future research.

References

  • Acu, A-M., Mutlu, G., Çekim, B., Yazıcı, S., A new representation and shape-preserving properties of perturbed Bernstein operators, Mathematical Methods in the Applied Sciences, 47(1) (2024), 5-14. 10.1002/mma.9636
  • Ansari, K. J., Karakılıç, S., Özger, F., Bivariate Bernstein-Kantorovich operators with a summability method and related GBS operators, Filomat, 36(19) (2022), 6751-6765. https://doi.org/10.2298/FIL2219751A
  • Ascher, U. M., Greif, C., A First Course in Numerical Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2011. https://doi.org/10.1137/9780898719987.ch10
  • Aslan, R., Mursaleen, M., Some approximation results on a class of new type λ-Bernstein polynomials, J. Math. Inequal., 16(2) (2022), 445-462. https://doi.org/10.7153/jmi-2022-16-32
  • Aslan, R., Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators, Kuwait J. Sci., 51 (2024), 100168. https://doi.org/10.1016/j.kjs.2023.12.007
  • Ayar, A., Sahin, B., Curves used in highway design and Bezier curves, Novi Sad J. Math, 52(1) (2022), 29-38. https://doi.org/10.30755/NSJOM.09557
  • Ayman-Mursaleen, M., Nasiruzzaman, M., Rao, N., Dilshad, M., Nisar, K. S., Approximation by the modified λ-Bernstein-polynomial in terms of basis function, Aims Math., 9 (2024), 4409-4426. http://doi.org/10.3934/math.2024217
  • Cai, Q. B., Aslan, R., On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry, 2021(13) (2021), 1919. https://doi.org/10.3390/sym13101919
  • Cai, Q-B., Ansari, K. J., Temizer Ersoy, M., Özger, F., Statistical blending-type approximation by a class of operators that includes shape parameters λ and α, Mathematics, 10 (2022), 1149. https://doi.org/10.3390/math10071149
  • Cai, Q-B., Aslan, R., Özger, F., Srivastava, H. M., Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators, Alexandria Engineering Journal, 107 (2024), 205-214. https://doi.org/10.1016/j.aej.2024.07.015
  • Mad Zain, S. A. A. A. S., Misro, M. Y., Miura, K. T., Enhancing flexibility and control in κ-curve using fractional Bezier curves, Alexandria Engineering Journal, 89 (2024), 71-82. https://doi.org/10.1016/j.aej.2024.01.047
  • Ye, Z., Long, X., Zeng, X. M., Adjustment algorithms for B´ezier curve and surface, In: The 5. International Conference on Computer Science and Education, (2010), 1712-1716. https://doi.org/10.1109/ICCSE.2010.5593563
  • Gezer, H., Aktuğlu, H., Baytunç, E., Atamert M. S., Generalized blending type Bernstein operators based on the shape parameter λ, J. Inequal. Appl., 2022(96) (2022), 1-19. https://doi.org/10.1186/s13660-022-02832-x
  • Kajla, A., Özger, F., Yadav, J., Bezier-Baskakov-beta type operators, Filomat, 36(19) (2022), 6735-6750. https://doi.org/10.2298/FIL2219735K
  • Marinescu, D. S¸., Niculescu C. P., Old and new on the 3-convex functions, Math. Inequal. Appl., 26(4) (2023), 911-933. https://doi.org/10.7153/mia-2023-26-56
  • Özger, F., On new Bezier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 376-393. https://doi.org/10.31801/cfsuasmas.510382
  • Özger, F., Aljimi, E., Temizer Ersoy, M., Rate of weighted statistical convergence for generalized blending-type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. https://doi.org/10.3390/math10122027
  • Rao, N., Nasiruzzaman, Md., Heshamuddin, M., Shadab, M., Approximation properties by modified Baskakov-Durrmeyer operators based on shape parameter-α, Iran J. Sci. Technol. Trans. A Sci., 45 (2021), 1457-1465. https://doi.org/10.1007/s40995-021-01125-0
  • Schurer, F., On linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft: Report, 1962.
  • Srivastava, H. M., Ansari, K. J., Özger, F., Ödemis Özger, Z., A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9 (2021), 1895. https://doi.org/10.3390/math9161895
  • Su, L. T., Mutlu, G., Çekim, B., On the shape-preserving properties of λ-Bernstein operators, J. Inequal. Appl., 2022(151) (2022), 1-11. DOI: 10.1186/s13660-022-02890-1
  • Turhan, N., Özger, F., Mursaleen, M., Kantorovich-Stancu type (α, λ, s)-Bernstein operators and their approximation properties, Mathematical and Computer Modelling of Dynamical Systems, 30(1) (2024), 228-265. https://doi.org/ 10.1080/13873954.2024.2335382
Year 2024, Volume: 73 Issue: 4, 1153 - 1170
https://doi.org/10.31801/cfsuasmas.1537498

Abstract

References

  • Acu, A-M., Mutlu, G., Çekim, B., Yazıcı, S., A new representation and shape-preserving properties of perturbed Bernstein operators, Mathematical Methods in the Applied Sciences, 47(1) (2024), 5-14. 10.1002/mma.9636
  • Ansari, K. J., Karakılıç, S., Özger, F., Bivariate Bernstein-Kantorovich operators with a summability method and related GBS operators, Filomat, 36(19) (2022), 6751-6765. https://doi.org/10.2298/FIL2219751A
  • Ascher, U. M., Greif, C., A First Course in Numerical Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2011. https://doi.org/10.1137/9780898719987.ch10
  • Aslan, R., Mursaleen, M., Some approximation results on a class of new type λ-Bernstein polynomials, J. Math. Inequal., 16(2) (2022), 445-462. https://doi.org/10.7153/jmi-2022-16-32
  • Aslan, R., Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators, Kuwait J. Sci., 51 (2024), 100168. https://doi.org/10.1016/j.kjs.2023.12.007
  • Ayar, A., Sahin, B., Curves used in highway design and Bezier curves, Novi Sad J. Math, 52(1) (2022), 29-38. https://doi.org/10.30755/NSJOM.09557
  • Ayman-Mursaleen, M., Nasiruzzaman, M., Rao, N., Dilshad, M., Nisar, K. S., Approximation by the modified λ-Bernstein-polynomial in terms of basis function, Aims Math., 9 (2024), 4409-4426. http://doi.org/10.3934/math.2024217
  • Cai, Q. B., Aslan, R., On a new construction of generalized q-Bernstein polynomials based on shape parameter λ, Symmetry, 2021(13) (2021), 1919. https://doi.org/10.3390/sym13101919
  • Cai, Q-B., Ansari, K. J., Temizer Ersoy, M., Özger, F., Statistical blending-type approximation by a class of operators that includes shape parameters λ and α, Mathematics, 10 (2022), 1149. https://doi.org/10.3390/math10071149
  • Cai, Q-B., Aslan, R., Özger, F., Srivastava, H. M., Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators, Alexandria Engineering Journal, 107 (2024), 205-214. https://doi.org/10.1016/j.aej.2024.07.015
  • Mad Zain, S. A. A. A. S., Misro, M. Y., Miura, K. T., Enhancing flexibility and control in κ-curve using fractional Bezier curves, Alexandria Engineering Journal, 89 (2024), 71-82. https://doi.org/10.1016/j.aej.2024.01.047
  • Ye, Z., Long, X., Zeng, X. M., Adjustment algorithms for B´ezier curve and surface, In: The 5. International Conference on Computer Science and Education, (2010), 1712-1716. https://doi.org/10.1109/ICCSE.2010.5593563
  • Gezer, H., Aktuğlu, H., Baytunç, E., Atamert M. S., Generalized blending type Bernstein operators based on the shape parameter λ, J. Inequal. Appl., 2022(96) (2022), 1-19. https://doi.org/10.1186/s13660-022-02832-x
  • Kajla, A., Özger, F., Yadav, J., Bezier-Baskakov-beta type operators, Filomat, 36(19) (2022), 6735-6750. https://doi.org/10.2298/FIL2219735K
  • Marinescu, D. S¸., Niculescu C. P., Old and new on the 3-convex functions, Math. Inequal. Appl., 26(4) (2023), 911-933. https://doi.org/10.7153/mia-2023-26-56
  • Özger, F., On new Bezier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 376-393. https://doi.org/10.31801/cfsuasmas.510382
  • Özger, F., Aljimi, E., Temizer Ersoy, M., Rate of weighted statistical convergence for generalized blending-type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. https://doi.org/10.3390/math10122027
  • Rao, N., Nasiruzzaman, Md., Heshamuddin, M., Shadab, M., Approximation properties by modified Baskakov-Durrmeyer operators based on shape parameter-α, Iran J. Sci. Technol. Trans. A Sci., 45 (2021), 1457-1465. https://doi.org/10.1007/s40995-021-01125-0
  • Schurer, F., On linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft: Report, 1962.
  • Srivastava, H. M., Ansari, K. J., Özger, F., Ödemis Özger, Z., A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9 (2021), 1895. https://doi.org/10.3390/math9161895
  • Su, L. T., Mutlu, G., Çekim, B., On the shape-preserving properties of λ-Bernstein operators, J. Inequal. Appl., 2022(151) (2022), 1-11. DOI: 10.1186/s13660-022-02890-1
  • Turhan, N., Özger, F., Mursaleen, M., Kantorovich-Stancu type (α, λ, s)-Bernstein operators and their approximation properties, Mathematical and Computer Modelling of Dynamical Systems, 30(1) (2024), 228-265. https://doi.org/ 10.1080/13873954.2024.2335382
There are 22 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Articles
Authors

Nezihe Turhan Turan 0000-0002-9012-4386

Zeynep Ödemiş Özger 0000-0002-3941-1726

Publication Date
Submission Date August 22, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2024 Volume: 73 Issue: 4

Cite

APA Turhan Turan, N., & Ödemiş Özger, Z. (n.d.). An analysis on the shape-preserving characteristics of 𝜆-Schurer operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 1153-1170. https://doi.org/10.31801/cfsuasmas.1537498
AMA Turhan Turan N, Ödemiş Özger Z. An analysis on the shape-preserving characteristics of 𝜆-Schurer operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73(4):1153-1170. doi:10.31801/cfsuasmas.1537498
Chicago Turhan Turan, Nezihe, and Zeynep Ödemiş Özger. “An Analysis on the Shape-Preserving Characteristics of 𝜆-Schurer Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 4 n.d.: 1153-70. https://doi.org/10.31801/cfsuasmas.1537498.
EndNote Turhan Turan N, Ödemiş Özger Z An analysis on the shape-preserving characteristics of 𝜆-Schurer operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 4 1153–1170.
IEEE N. Turhan Turan and Z. Ödemiş Özger, “An analysis on the shape-preserving characteristics of 𝜆-Schurer operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 4, pp. 1153–1170, doi: 10.31801/cfsuasmas.1537498.
ISNAD Turhan Turan, Nezihe - Ödemiş Özger, Zeynep. “An Analysis on the Shape-Preserving Characteristics of 𝜆-Schurer Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/4 (n.d.), 1153-1170. https://doi.org/10.31801/cfsuasmas.1537498.
JAMA Turhan Turan N, Ödemiş Özger Z. An analysis on the shape-preserving characteristics of 𝜆-Schurer operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.;73:1153–1170.
MLA Turhan Turan, Nezihe and Zeynep Ödemiş Özger. “An Analysis on the Shape-Preserving Characteristics of 𝜆-Schurer Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 4, pp. 1153-70, doi:10.31801/cfsuasmas.1537498.
Vancouver Turhan Turan N, Ödemiş Özger Z. An analysis on the shape-preserving characteristics of 𝜆-Schurer operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73(4):1153-70.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.