Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 3, 546 - 559, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1541978

Abstract

References

  • Akbarally, A. B., Arunah, N. S. K., On some properties of a generalized class of close-to-starlike functions, Malays. J. Comput., 4(1) (2019), 193–200. https://doi.org/10.24191/mjoc.v4i1.4937.
  • Ayinla, R. O., Lasode, A. O., Some coefficient properties of a certain family of regular functions associated with lemniscate of Bernoulli and Opoola differential operator, Malaya J. Math., 12(2) (2024), 218–228. http://doi.org/10.26637/mjm1202/007.
  • Babalola, K. O., Olasupo, A. O., Ejieji, C. N., Early coefficients of close-to-star functions of type $\alpha$, J. Nig. Math. Soc., 31(1-3) (2012), 185–189.
  • Babalola, K. O., Opoola, T. O., On the coefficients of a certain class of analytic functions. In: Dragomir, S. S., Sofo, A., (Eds.), Advances in Inequalities for Series (1–13), Nova Science Publishers Inc., Hauppauge, New York, 2008.
  • Carlson, F. Sur les coefficients d’une fonction bornée dans le cercle unité, Ark. Mat. Astr. Fys., A27(1) (1940), 1–8.
  • Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(4) (1984), 737–745. https://doi.org/10.1137/0515057.
  • Causey, W. M., Merkes, E. P., Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl., 31(3) (1970), 579–586. https://doi.org/10.1016/0022-247X(70)90010-7.
  • Fekete, M., Szegö, G., Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc., s1-8(2) (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85.
  • Goodman, A. W., Univalent Functions, vol. II, Mariner Publishing Company Inc., Tampa, Florida, 1983.
  • Jack, I. S., Functions starlike and convex of order $\alpha$, J. Lond. Math. Soc., s2-3(3) (1971), 469–474. https://doi.org/10.1112/jlms/s2-3.3.469.
  • Kasi, M. S., A subclass of close-to-star functions, Math. Rep. Toyama Univ., 7 (1984), 109–113.
  • Kasi, M. S., Some Studies in Univalent Functions, Ph.D. Thesis submitted to the University of Madras, 1985. https://shodhganga.inflibnet.ac.in/handle/10603/245344.
  • Lacko, A., Sim, Y. J., Coefficient problems in the subclasses of close-to-star functions, Results Math., 74(3) (2019), 1–14. https://doi.org/10.1007/s00025-019-1030-y.
  • Lasode, A. O., Ajiboye, A. O., Ayinla, R. O., Some coefficient problems of a class of close-to-star functions of type $\alpha$ defined by means of a generalized differential operator, Int. J. Nonlinear Anal. Appl., 14(1) (2023), 519–526. http://dx.doi.org/10.22075/ijnaa.2022.26979.3466.
  • MacGregor, T. H., The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(3) (1963), 514–520. https://doi.org/10.1090/s0002-9939-1963-0148891-3.
  • Oyekan, E. A., Opoola, T. O., Hankel determinant for a subclass of analytic functions associated with generalized Struve function of order $p$ bounded by conical regions, Palestine J. Math., 11(2) (2022), 395–405.
  • Padmanabhan, K. S., On a certain class of functions whose derivatives have a positive real part in the unit disc, Ann. Polon. Math., 23(1) (1970), 73–81. https://doi.org/10.4064/ap-23-1-73-81.
  • Padmanabhan, K. S., Bharati, R., On a subclass of univalent functions II, Ann. Polon. Math., 43(1) (1983), 73–78. https://doi.org/10.4064/ap-43-1-73-78.
  • Pommerenke, C., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, Germany, 1975.
  • Reade, M. O., On close-to-convex univalent functions, Mich. Math. J., 3(1) (1955-56), 59–62. https://doi.org/10.1307/mmj/1031710535.
  • Sakaguchi, K., The radius of convexity for certain class of regular functions, J. Nara Gakugei Univ. (Nat.), 12 (1964), 5–8.
  • Srivastava, H. M., Raducanu, D., Sălăgean, G. S., A new class of generalized close-to-starlike functions defined by the Srivastava-Attiya operator, Acta Math. Sinica, English Ser., 29(5) (2013), 833–840. https://doi.org/10.1007/s10114-013-2462-z.
  • Sudharsan, T. V., Balasubrahmanyam, P., Subramanian, K. G., On a subclass of close-to-star functions, J. Math. Phy. Sci., 25(4) (1991), 343–350.
  • Subramanian, K. G., Sudharsan, T. V., Silverman, H., On uniformly close-to-convex functions and uniformly quasi-convex functions, Int. J. Math. Math. Sci., 48 (2003), 3053–3058. https://doi.org/10.1155/S0161171203210644.
  • Thomas, D. K., Tuneski, N., Vasudevarao, A., Univalent Functions: A Primer, Walter de Gruyter Inc., Berlin, 2018. https://doi.org/10.1515/9783110560961-001.

On subclasses of close-to-star functions of order $\mu$ and type $(\alpha,\beta)$

Year 2025, Volume: 74 Issue: 3, 546 - 559, 23.09.2025
https://doi.org/10.31801/cfsuasmas.1541978

Abstract

Let $\mathcal{P}_{\mu}$ represent the class of analytic functions $\wp(z)$ defined in the open unit disc $\varDelta=\{z: |z|<1 \}$ with $\wp(0)=1$ and
$$
\left| \frac{\wp(z)-1}{\wp(z)+1} \right| < \mu.
$$
In this paper, we introduce two new subclasses $\mathcal{L}_{u,v}(\alpha,\beta,\mu)$ and $\mathcal{L}^\lambda_{u,v}(\alpha,\beta,\mu)$ of the class of close-to-star functions that satisfy the conditions:
$$
\left( \alpha \frac{(\mathscr{L}_{u,v} f(z))'}{g'(z)}+\beta \frac{\mathscr{L}_{u,v} f(z)}{g(z)} \right) \in\mathcal{P}_{\mu}
$$
and
$$
\left(\alpha \frac{((\mathscr{L}_{u,v} f(z))')^{\lambda}}{(g'(z))^{\lambda}}+\beta \frac{(\mathscr{L}_{u,v} f(z))^{\lambda}}{(g(z))^{\lambda}}
\right) \in\mathcal{P}_{\mu},
$$
respectively. Functions $f$ in the new classes are normalized analytic functions defined in the unit disc $\varDelta$ such that $g$ is starlike and $\mathscr{L}_{u,v}$ is the Carlson-Shaffer operator. Some reported results for $f\in\mathcal{L}_{u,v}(\alpha,\beta,\mu)$ include the integral representation formula, some coefficient estimates, Fekete-Szegö estimates for real and complex parameters, and some inclusion properties. All the results are sharp. Again, some early coefficient estimates for functions $f\in\mathcal{L}^\lambda_{u,v}(\alpha,\beta,\mu)$ are investigated. Furthermore, a number of remarks to show the relationship between the new classes and some existing classes are clearly discussed.

References

  • Akbarally, A. B., Arunah, N. S. K., On some properties of a generalized class of close-to-starlike functions, Malays. J. Comput., 4(1) (2019), 193–200. https://doi.org/10.24191/mjoc.v4i1.4937.
  • Ayinla, R. O., Lasode, A. O., Some coefficient properties of a certain family of regular functions associated with lemniscate of Bernoulli and Opoola differential operator, Malaya J. Math., 12(2) (2024), 218–228. http://doi.org/10.26637/mjm1202/007.
  • Babalola, K. O., Olasupo, A. O., Ejieji, C. N., Early coefficients of close-to-star functions of type $\alpha$, J. Nig. Math. Soc., 31(1-3) (2012), 185–189.
  • Babalola, K. O., Opoola, T. O., On the coefficients of a certain class of analytic functions. In: Dragomir, S. S., Sofo, A., (Eds.), Advances in Inequalities for Series (1–13), Nova Science Publishers Inc., Hauppauge, New York, 2008.
  • Carlson, F. Sur les coefficients d’une fonction bornée dans le cercle unité, Ark. Mat. Astr. Fys., A27(1) (1940), 1–8.
  • Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(4) (1984), 737–745. https://doi.org/10.1137/0515057.
  • Causey, W. M., Merkes, E. P., Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl., 31(3) (1970), 579–586. https://doi.org/10.1016/0022-247X(70)90010-7.
  • Fekete, M., Szegö, G., Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc., s1-8(2) (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85.
  • Goodman, A. W., Univalent Functions, vol. II, Mariner Publishing Company Inc., Tampa, Florida, 1983.
  • Jack, I. S., Functions starlike and convex of order $\alpha$, J. Lond. Math. Soc., s2-3(3) (1971), 469–474. https://doi.org/10.1112/jlms/s2-3.3.469.
  • Kasi, M. S., A subclass of close-to-star functions, Math. Rep. Toyama Univ., 7 (1984), 109–113.
  • Kasi, M. S., Some Studies in Univalent Functions, Ph.D. Thesis submitted to the University of Madras, 1985. https://shodhganga.inflibnet.ac.in/handle/10603/245344.
  • Lacko, A., Sim, Y. J., Coefficient problems in the subclasses of close-to-star functions, Results Math., 74(3) (2019), 1–14. https://doi.org/10.1007/s00025-019-1030-y.
  • Lasode, A. O., Ajiboye, A. O., Ayinla, R. O., Some coefficient problems of a class of close-to-star functions of type $\alpha$ defined by means of a generalized differential operator, Int. J. Nonlinear Anal. Appl., 14(1) (2023), 519–526. http://dx.doi.org/10.22075/ijnaa.2022.26979.3466.
  • MacGregor, T. H., The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(3) (1963), 514–520. https://doi.org/10.1090/s0002-9939-1963-0148891-3.
  • Oyekan, E. A., Opoola, T. O., Hankel determinant for a subclass of analytic functions associated with generalized Struve function of order $p$ bounded by conical regions, Palestine J. Math., 11(2) (2022), 395–405.
  • Padmanabhan, K. S., On a certain class of functions whose derivatives have a positive real part in the unit disc, Ann. Polon. Math., 23(1) (1970), 73–81. https://doi.org/10.4064/ap-23-1-73-81.
  • Padmanabhan, K. S., Bharati, R., On a subclass of univalent functions II, Ann. Polon. Math., 43(1) (1983), 73–78. https://doi.org/10.4064/ap-43-1-73-78.
  • Pommerenke, C., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, Germany, 1975.
  • Reade, M. O., On close-to-convex univalent functions, Mich. Math. J., 3(1) (1955-56), 59–62. https://doi.org/10.1307/mmj/1031710535.
  • Sakaguchi, K., The radius of convexity for certain class of regular functions, J. Nara Gakugei Univ. (Nat.), 12 (1964), 5–8.
  • Srivastava, H. M., Raducanu, D., Sălăgean, G. S., A new class of generalized close-to-starlike functions defined by the Srivastava-Attiya operator, Acta Math. Sinica, English Ser., 29(5) (2013), 833–840. https://doi.org/10.1007/s10114-013-2462-z.
  • Sudharsan, T. V., Balasubrahmanyam, P., Subramanian, K. G., On a subclass of close-to-star functions, J. Math. Phy. Sci., 25(4) (1991), 343–350.
  • Subramanian, K. G., Sudharsan, T. V., Silverman, H., On uniformly close-to-convex functions and uniformly quasi-convex functions, Int. J. Math. Math. Sci., 48 (2003), 3053–3058. https://doi.org/10.1155/S0161171203210644.
  • Thomas, D. K., Tuneski, N., Vasudevarao, A., Univalent Functions: A Primer, Walter de Gruyter Inc., Berlin, 2018. https://doi.org/10.1515/9783110560961-001.
There are 25 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Ramalingam Sathish Srinivasan 0009-0006-5702-5593

Raman Ezhilarasi 0009-0004-9070-3187

Ayotunde Olajide Lasode 0000-0002-2657-7698

Thirumalai Vinjimur Sudharsan 0000-0002-6882-3367

Publication Date September 23, 2025
Submission Date September 3, 2024
Acceptance Date February 28, 2025
Published in Issue Year 2025 Volume: 74 Issue: 3

Cite

APA Srinivasan, R. S., Ezhilarasi, R., Lasode, A. O., Sudharsan, T. V. (2025). On subclasses of close-to-star functions of order $\mu$ and type $(\alpha,\beta)$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(3), 546-559. https://doi.org/10.31801/cfsuasmas.1541978
AMA Srinivasan RS, Ezhilarasi R, Lasode AO, Sudharsan TV. On subclasses of close-to-star functions of order $\mu$ and type $(\alpha,\beta)$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2025;74(3):546-559. doi:10.31801/cfsuasmas.1541978
Chicago Srinivasan, Ramalingam Sathish, Raman Ezhilarasi, Ayotunde Olajide Lasode, and Thirumalai Vinjimur Sudharsan. “On Subclasses of Close-to-Star Functions of Order $\mu$ and Type $(\alpha,\beta)$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 3 (September 2025): 546-59. https://doi.org/10.31801/cfsuasmas.1541978.
EndNote Srinivasan RS, Ezhilarasi R, Lasode AO, Sudharsan TV (September 1, 2025) On subclasses of close-to-star functions of order $\mu$ and type $(\alpha,\beta)$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 3 546–559.
IEEE R. S. Srinivasan, R. Ezhilarasi, A. O. Lasode, and T. V. Sudharsan, “On subclasses of close-to-star functions of order $\mu$ and type $(\alpha,\beta)$”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 3, pp. 546–559, 2025, doi: 10.31801/cfsuasmas.1541978.
ISNAD Srinivasan, Ramalingam Sathish et al. “On Subclasses of Close-to-Star Functions of Order $\mu$ and Type $(\alpha,\beta)$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/3 (September2025), 546-559. https://doi.org/10.31801/cfsuasmas.1541978.
JAMA Srinivasan RS, Ezhilarasi R, Lasode AO, Sudharsan TV. On subclasses of close-to-star functions of order $\mu$ and type $(\alpha,\beta)$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:546–559.
MLA Srinivasan, Ramalingam Sathish et al. “On Subclasses of Close-to-Star Functions of Order $\mu$ and Type $(\alpha,\beta)$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 3, 2025, pp. 546-59, doi:10.31801/cfsuasmas.1541978.
Vancouver Srinivasan RS, Ezhilarasi R, Lasode AO, Sudharsan TV. On subclasses of close-to-star functions of order $\mu$ and type $(\alpha,\beta)$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(3):546-59.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.