Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 1, 11 - 19, 31.03.2023
https://doi.org/10.51537/chaos.1204481

Abstract

Project Number

W911NF-20-1-0336

References

  • Abdullah, H. A. and H. N. Abdullah, 2019 Design and fpaa implementation of novel chaotic system. Univ Politehnica Bucharest Scient Bull Ser C-Electrical Eng Comput Sci 81: 153–164.
  • Acebrón, J. A., L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, 2005 The kuramoto model: A simple paradigm for synchronization phenomena. Reviews of modern physics 77: 137.
  • Banerjee, T., B. Paul, and B. Sarkar, 2014 Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system. Chaos: An Interdisciplinary Journal of Nonlinear Science 24: 013116.
  • Bick, C., M. J. Panaggio, and E. A. Martens, 2018 Chaos in kuramoto oscillator networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 28: 071102.
  • Bishop, S., A. Sofroniou, and P. Shi, 2005 Symmetry-breaking in the response of the parametrically excited pendulum model. Chaos, Solitons & Fractals 25: 257–264.
  • Biswas, D. and T. Banerjee, 2016 A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dynamics 83: 2331–2347.
  • Buchli, J., L. Righetti, and A. J. Ijspeert, 2008 Frequency analysis with coupled nonlinear oscillators. Physica D: Nonlinear Phenomena 237: 1705–1718.
  • Chakraborty, S., M. Dandapathak, and B. Sarkar, 2016 Oscillation quenching in third order phase locked loop coupled by mean field diffusive coupling. Chaos: An Interdisciplinary Journal of Nonlinear Science 26: 113106.
  • Çiçek, S., 2019 Fpaa based desıgn and implementation of sprott n chaotic system. In International Scientific and Vocational Studies Congress, pp. 476–482, BILMES 2019 Ankara.
  • Corron, N. J., 2022 Complex waveform estimation using adaptive frequency oscillators. Chaos, Solitons & Fractals 158: 111991.
  • Dahasert, N., ˙I. Öztürk, and R. Kiliç, 2012 Experimental realizations of the hr neuron model with programmable hardware and synchronization applications. Nonlinear Dynamics 70: 2343–2358.
  • Dalkiran, F. Y. and J. C. Sprott, 2016 Simple chaotic hyperjerk system. International Journal of Bifurcation and Chaos 26: 1650189.
  • de Paula, A. S., M. A. Savi, and F. H. I. Pereira-Pinto, 2006 Chaos and transient chaos in an experimental nonlinear pendulum. Journal of sound and vibration 294: 585–595.
  • Dénes, K., B. Sándor, and Z. Néda, 2019 Pattern selection in a ring of kuramoto oscillators. Communications in Nonlinear Science and Numerical Simulation 78: 104868.
  • Dénes, K., B. Sándor, and Z. Néda, 2021 Synchronization patterns in rings of time-delayed kuramoto oscillators. Communications in Nonlinear Science and Numerical Simulation 93: 105505.
  • d’Humieres, D., M. Beasley, B. Huberman, and A. Libchaber, 1982 Chaotic states and routes to chaos in the forced pendulum. Physical Review A 26: 3483.
  • Dürig, U., H. Steinauer, and N. Blanc, 1997 Dynamic force microscopy by means of the phase-controlled oscillator method. Journal of applied physics 82: 3641–3651.
  • Gitterman, M., 2010 The Chaotic Pendulum. World Scientific. Günay, E. and K. Altun, 2018 Lorenz-like system design using cellular neural networks. Turkish Journal of Electrical Engineering & Computer Sciences 26: 1812–1819.
  • Han, N. and Q. Cao, 2016 Global bifurcations of a rotating pendulum with irrational nonlinearity. Communications in Nonlinear Science and Numerical Simulation 36: 431–445.
  • Harb, B. A. and A. M. Harb, 2004 Chaos and bifurcation in a thirdorder phase locked loop. Chaos, Solitons & Fractals 19: 667–672.
  • Harrison, R. C., A. OLDAG, E. PERK˙INS, et al., 2022 Experimental validation of a chaotic jerk circuit based true random number generator. Chaos Theory and Applications 4: 64–70.
  • Jahanshahi, H., O. Orozco-López, J. M. Munoz-Pacheco, N. D. Alotaibi, C. Volos, et al., 2021 Simulation and experimental validation of a non-equilibrium chaotic system. Chaos, Solitons & Fractals 143: 110539.
  • Jallouli, A., N. Kacem, and N. Bouhaddi, 2017 Stabilization of solitons in coupled nonlinear pendulums with simultaneous external and parametric excitations. Communications in Nonlinear Science and Numerical Simulation 42: 1–11.
  • Kempter, R., W. Gerstner, and J. L. Van Hemmen, 1999 Hebbian learning and spiking neurons. Physical Review E 59: 4498.
  • Kilic, R. and F. Y. Dalkiran, 2009 Reconfigurable implementations of chua’s circuit. International Journal of Bifurcation and Chaos 19: 1339–1350.
  • Kim, S.-Y. and B. Hu, 1998 Bifurcations and transitions to chaos in an inverted pendulum. Physical Review E 58: 3028.
  • Kutuk, H. and S.-M. Kang, 1996 A field-programmable analog array (fpaa) using switched-capacitor techniques. In 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, volume 4, pp. 41–44, IEEE.
  • Kuznetsov, N. V., G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, 2017 Hidden attractors in dynamical models of phaselocked loop circuits: limitations of simulation in matlab and spice. Communications in Nonlinear Science and Numerical Simulation 51: 39–49.
  • Lai, Q., Z.Wan, P. D. K. Kuate, and H. Fotsin, 2020 Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Communications in Nonlinear Science and Numerical Simulation 89: 105341.
  • Leutcho, G., J. Kengne, and L. K. Kengne, 2018 Dynamical analysis of a novel autonomous 4-d hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimonotonicity and a plethora of coexisting attractors. Chaos, Solitons & Fractals 107: 67–87.
  • Leutcho, G. D. and J. Kengne, 2018 A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos, Solitons & Fractals 113: 275–293.
  • Levien, R. and S. Tan, 1993 Double pendulum: An experiment in chaos. American Journal of Physics 61: 1038–1044.
  • Li, C.,W. J.-C. Thio, J. C. Sprott, H. H.-C. Iu, and Y. Xu, 2018 Constructing infinitely many attractors in a programmable chaotic circuit. IEEE Access 6: 29003–29012.
  • Li, T.-Y. and J. A. Yorke, 2004 Period three implies chaos. In The theory of chaotic attractors, pp. 77–84, Springer.
  • Li, X., P. Kallepalli, T. Mollik, M. R. E. U. Shougat, S. Kennedy, et al., 2022 The pendulum adaptive frequency oscillator. Mechanical Systems and Signal Processing 179: 109361.
  • Li, X., M. R. E. U. Shougat, S. Kennedy, C. Fendley, R. N. Dean, et al., 2021a A four-state adaptive hopf oscillator. Plos one 16: e0249131.
  • Li, X., M. R. E. U. Shougat, T. Mollik, A. N. Beal, R. N. Dean, et al., 2021b Stochastic effects on a hopf adaptive frequency oscillator. Journal of Applied Physics 129: 224901.
  • Luo, A. C. and F. Min, 2011 The chaotic synchronization of a controlled pendulum with a periodically forced, damped duffing oscillator. Communications in Nonlinear Science and Numerical Simulation 16: 4704–4717.
  • Makarov, V., A. Koronovskii, V. Maksimenko, A. Hramov, O. Moskalenko, et al., 2016 Emergence of a multilayer structure in adaptive networks of phase oscillators. Chaos, Solitons & Fractals 84: 23–30.
  • Maleki, M. A., A. Ahmadi, S. V. A.-D. Makki, H. Soleimani, and M. Bavandpour, 2015 Networked adaptive non-linear oscillators: a digital synthesis and application. Circuits, Systems, and Signal Processing 34: 483–512.
  • Métivier, D., L.Wetzel, and S. Gupta, 2020 Onset of synchronization in networks of second-order kuramoto oscillators with delayed coupling: Exact results and application to phase-locked loops. Physical Review Research 2: 023183.
  • Miao, C.,W. Luo, Y. Ma,W. Liu, and J. Xiao, 2014 A simple method to improve a torsion pendulum for studying chaos. European Journal of Physics 35: 055012.
  • Munyaev, V. O., D. S. Khorkin, M. I. Bolotov, L. A. Smirnov, and G. V. Osipov, 2021 Appearance of chaos and hyperchaos in evolving pendulum network. Chaos: An Interdisciplinary Journal of Nonlinear Science 31: 063106.
  • Nana, B., P.Woafo, and S. Domngang, 2009 Chaotic synchronization with experimental application to secure communications. Communications in nonlinear science and Numerical Simulation 14: 2266–2276.
  • Nunez-Yepez, H., A. Salas-Brito, C. Vargas, and L. Vicente, 1990 Onset of chaos in an extensible pendulum. Physics Letters A 145: 101–105.
  • Nwachioma, C. and J. H. Pérez-Cruz, 2021 Analysis of a new chaotic system, electronic realization and use in navigation of differential drive mobile robot. Chaos, Solitons & Fractals 144: 110684.
  • Olson, C., J. Nichols, J. Michalowicz, and F. Bucholtz, 2011 Signal design using nonlinear oscillators and evolutionary algorithms: Application to phase-locked loop disruption. Chaos: An Interdisciplinary Journal of Nonlinear Science 21: 023136.
  • Ouannas, A., Z. Odibat, and T. Hayat, 2017 Fractional analysis of co-existence of some types of chaos synchronization. Chaos, Solitons & Fractals 105: 215–223.
  • Paul, B. and T. Banerjee, 2019 Chimeras in digital phase-locked loops. Chaos: An Interdisciplinary Journal of Nonlinear Science 29: 013102.
  • Pereira-Pinto, F. H. I., A. M. Ferreira, and M. A. Savi, 2004 Chaos control in a nonlinear pendulum using a semi-continuous method. Chaos, Solitons & Fractals 22: 653–668.
  • Perkins, E., 2019 Restricted normal mode analysis and chaotic response of p-mode intrinsic localized mode. Nonlinear Dynamics 97: 955–966.
  • Perkins, E. and T. Fitzgerald, 2018 Continuation method on cumulant neglect equations. Journal of Computational and Nonlinear Dynamics 13.
  • Pham, V.-T., S. Jafari, C. Volos, and L. Fortuna, 2019 Simulation and experimental implementation of a line–equilibrium system without linear term. Chaos, Solitons & Fractals 120: 213–221.
  • Piqueira, J. R. C., 2017 Hopf bifurcation and chaos in a third-order phase-locked loop. Communications in Nonlinear Science and Numerical Simulation 42: 178–186.
  • Rhea, B. K., R. C. Harrison, F. T.Werner, E. Perkins, and R. N. Dean, 2020 Approximating an exactly solvable chaotic oscillator using a colpitts oscillator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs 68: 1028–1032.
  • Ricco, R. A., A. Verly, and G. F. V. Amaral, 2016 A circuit for automatic measurement of bifurcation diagram in nonlinear electronic oscillators. IEEE Latin America Transactions 14: 3042– 3047.
  • Righetti, L., J. Buchli, and A. J. Ijspeert, 2006 Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena 216: 269–281.
  • Righetti, L., J. Buchli, and A. J. Ijspeert, 2009 Adaptive frequency oscillators and applications. The Open Cybernetics & Systemics Journal 3.
  • Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke, 1992 Chaos in a double pendulum. American Journal of Physics 60: 491–499.
  • Shougat, M., R. E. Ul, X. Li, T. Mollik, and E. Perkins, 2021a An information theoretic study of a duffing oscillator array reservoir computer. Journal of Computational and Nonlinear Dynamics 16.
  • Shougat, M. R. E. U., X. Li, T. Mollik, and E. Perkins, 2021b A hopf physical reservoir computer. Scientific Reports 11: 1–13.
  • Shougat, M. R. E. U., X. Li, and E. Perkins, 2022 Dynamic effects on reservoir computing with a hopf oscillator. Physical Review E 105: 044212.
  • Silva-Juárez, A., E. Tlelo-Cuautle, L. G. de la Fraga, and R. Li, 2020 Fpaa-based implementation of fractional-order chaotic oscillators using first-order active filter blocks. Journal of advanced research .
  • Stachowiak, T. and T. Okada, 2006 A numerical analysis of chaos in the double pendulum. Chaos, Solitons & Fractals 29: 417–422.
  • Tlelo-Cuautle, E., A. D. Pano-Azucena, O. Guillén-Fernández, and A. Silva-Juárez, 2020 Analog/digital implementation of fractional order chaotic circuits and applications. Springer.
  • Viana Jr, E. R., R. M. Rubinger, H. A. Albuquerque, A. G. de Oliveira, and G. M. Ribeiro, 2010 High-resolution parameter space of an experimental chaotic circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science 20: 023110.
  • Wang, R. and Z. Jing, 2004 Chaos control of chaotic pendulum system. Chaos, Solitons & Fractals 21: 201–207.
  • Xu, J.-q. and G. Jin, 2012 Synchronization of parallel-connected spin-transfer oscillators via magnetic feedback.
  • Xu, X., M.Wiercigroch, and M. Cartmell, 2005 Rotating orbits of a parametrically-excited pendulum. Chaos, Solitons & Fractals 23: 1537–1548.
  • Zhao, Y.-B., D.-Q. Wei, and X.-S. Luo, 2009 Study on chaos control of second-order non-autonomous phase-locked loop based on state observer. Chaos, Solitons & Fractals 39: 1817–1822.

Chaos in a Pendulum Adaptive Frequency Oscillator Circuit Experiment

Year 2023, Volume: 5 Issue: 1, 11 - 19, 31.03.2023
https://doi.org/10.51537/chaos.1204481

Abstract

Adaptive oscillators can learn and encode information in dynamic, plastic states. The pendulum has recently been proposed as the base oscillator of an adaptive system. In a mechanical setup, the horizontally forced pendulum adaptive frequency oscillator seeks a resonance condition by modifying the length of the pendulum's rod. This system stores the external forcing frequency when the external amplitude is small, while it can store the resonance frequency, which is affected by the nonlinearity of the pendulum, when the external amplitude is large. Furthermore, for some frequency ranges, the pendulum adaptive frequency oscillator can exhibit chaotic motion when the amplitudes are large. This adaptive oscillator could be used as a smart vibratory energy harvester device, but this chaotic region could degrade its performance by using supplementary energy to modify the rod length. The pendulum adaptive frequency oscillator’s equations of motions are discussed, and a field-programmable analog array is used as an experimental realization of this system as an electronic circuit. Bifurcation diagrams are shown for both the numerical simulations and experiments, while period-3 motion is shown for the numerical simulations. As little work has been done on the stability of adaptive oscillators, the authors believe that this work is the first demonstration of chaos in an adaptive oscillator.

Supporting Institution

North Carolina State University

Project Number

W911NF-20-1-0336

References

  • Abdullah, H. A. and H. N. Abdullah, 2019 Design and fpaa implementation of novel chaotic system. Univ Politehnica Bucharest Scient Bull Ser C-Electrical Eng Comput Sci 81: 153–164.
  • Acebrón, J. A., L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, 2005 The kuramoto model: A simple paradigm for synchronization phenomena. Reviews of modern physics 77: 137.
  • Banerjee, T., B. Paul, and B. Sarkar, 2014 Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system. Chaos: An Interdisciplinary Journal of Nonlinear Science 24: 013116.
  • Bick, C., M. J. Panaggio, and E. A. Martens, 2018 Chaos in kuramoto oscillator networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 28: 071102.
  • Bishop, S., A. Sofroniou, and P. Shi, 2005 Symmetry-breaking in the response of the parametrically excited pendulum model. Chaos, Solitons & Fractals 25: 257–264.
  • Biswas, D. and T. Banerjee, 2016 A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dynamics 83: 2331–2347.
  • Buchli, J., L. Righetti, and A. J. Ijspeert, 2008 Frequency analysis with coupled nonlinear oscillators. Physica D: Nonlinear Phenomena 237: 1705–1718.
  • Chakraborty, S., M. Dandapathak, and B. Sarkar, 2016 Oscillation quenching in third order phase locked loop coupled by mean field diffusive coupling. Chaos: An Interdisciplinary Journal of Nonlinear Science 26: 113106.
  • Çiçek, S., 2019 Fpaa based desıgn and implementation of sprott n chaotic system. In International Scientific and Vocational Studies Congress, pp. 476–482, BILMES 2019 Ankara.
  • Corron, N. J., 2022 Complex waveform estimation using adaptive frequency oscillators. Chaos, Solitons & Fractals 158: 111991.
  • Dahasert, N., ˙I. Öztürk, and R. Kiliç, 2012 Experimental realizations of the hr neuron model with programmable hardware and synchronization applications. Nonlinear Dynamics 70: 2343–2358.
  • Dalkiran, F. Y. and J. C. Sprott, 2016 Simple chaotic hyperjerk system. International Journal of Bifurcation and Chaos 26: 1650189.
  • de Paula, A. S., M. A. Savi, and F. H. I. Pereira-Pinto, 2006 Chaos and transient chaos in an experimental nonlinear pendulum. Journal of sound and vibration 294: 585–595.
  • Dénes, K., B. Sándor, and Z. Néda, 2019 Pattern selection in a ring of kuramoto oscillators. Communications in Nonlinear Science and Numerical Simulation 78: 104868.
  • Dénes, K., B. Sándor, and Z. Néda, 2021 Synchronization patterns in rings of time-delayed kuramoto oscillators. Communications in Nonlinear Science and Numerical Simulation 93: 105505.
  • d’Humieres, D., M. Beasley, B. Huberman, and A. Libchaber, 1982 Chaotic states and routes to chaos in the forced pendulum. Physical Review A 26: 3483.
  • Dürig, U., H. Steinauer, and N. Blanc, 1997 Dynamic force microscopy by means of the phase-controlled oscillator method. Journal of applied physics 82: 3641–3651.
  • Gitterman, M., 2010 The Chaotic Pendulum. World Scientific. Günay, E. and K. Altun, 2018 Lorenz-like system design using cellular neural networks. Turkish Journal of Electrical Engineering & Computer Sciences 26: 1812–1819.
  • Han, N. and Q. Cao, 2016 Global bifurcations of a rotating pendulum with irrational nonlinearity. Communications in Nonlinear Science and Numerical Simulation 36: 431–445.
  • Harb, B. A. and A. M. Harb, 2004 Chaos and bifurcation in a thirdorder phase locked loop. Chaos, Solitons & Fractals 19: 667–672.
  • Harrison, R. C., A. OLDAG, E. PERK˙INS, et al., 2022 Experimental validation of a chaotic jerk circuit based true random number generator. Chaos Theory and Applications 4: 64–70.
  • Jahanshahi, H., O. Orozco-López, J. M. Munoz-Pacheco, N. D. Alotaibi, C. Volos, et al., 2021 Simulation and experimental validation of a non-equilibrium chaotic system. Chaos, Solitons & Fractals 143: 110539.
  • Jallouli, A., N. Kacem, and N. Bouhaddi, 2017 Stabilization of solitons in coupled nonlinear pendulums with simultaneous external and parametric excitations. Communications in Nonlinear Science and Numerical Simulation 42: 1–11.
  • Kempter, R., W. Gerstner, and J. L. Van Hemmen, 1999 Hebbian learning and spiking neurons. Physical Review E 59: 4498.
  • Kilic, R. and F. Y. Dalkiran, 2009 Reconfigurable implementations of chua’s circuit. International Journal of Bifurcation and Chaos 19: 1339–1350.
  • Kim, S.-Y. and B. Hu, 1998 Bifurcations and transitions to chaos in an inverted pendulum. Physical Review E 58: 3028.
  • Kutuk, H. and S.-M. Kang, 1996 A field-programmable analog array (fpaa) using switched-capacitor techniques. In 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, volume 4, pp. 41–44, IEEE.
  • Kuznetsov, N. V., G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev, 2017 Hidden attractors in dynamical models of phaselocked loop circuits: limitations of simulation in matlab and spice. Communications in Nonlinear Science and Numerical Simulation 51: 39–49.
  • Lai, Q., Z.Wan, P. D. K. Kuate, and H. Fotsin, 2020 Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Communications in Nonlinear Science and Numerical Simulation 89: 105341.
  • Leutcho, G., J. Kengne, and L. K. Kengne, 2018 Dynamical analysis of a novel autonomous 4-d hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimonotonicity and a plethora of coexisting attractors. Chaos, Solitons & Fractals 107: 67–87.
  • Leutcho, G. D. and J. Kengne, 2018 A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos, Solitons & Fractals 113: 275–293.
  • Levien, R. and S. Tan, 1993 Double pendulum: An experiment in chaos. American Journal of Physics 61: 1038–1044.
  • Li, C.,W. J.-C. Thio, J. C. Sprott, H. H.-C. Iu, and Y. Xu, 2018 Constructing infinitely many attractors in a programmable chaotic circuit. IEEE Access 6: 29003–29012.
  • Li, T.-Y. and J. A. Yorke, 2004 Period three implies chaos. In The theory of chaotic attractors, pp. 77–84, Springer.
  • Li, X., P. Kallepalli, T. Mollik, M. R. E. U. Shougat, S. Kennedy, et al., 2022 The pendulum adaptive frequency oscillator. Mechanical Systems and Signal Processing 179: 109361.
  • Li, X., M. R. E. U. Shougat, S. Kennedy, C. Fendley, R. N. Dean, et al., 2021a A four-state adaptive hopf oscillator. Plos one 16: e0249131.
  • Li, X., M. R. E. U. Shougat, T. Mollik, A. N. Beal, R. N. Dean, et al., 2021b Stochastic effects on a hopf adaptive frequency oscillator. Journal of Applied Physics 129: 224901.
  • Luo, A. C. and F. Min, 2011 The chaotic synchronization of a controlled pendulum with a periodically forced, damped duffing oscillator. Communications in Nonlinear Science and Numerical Simulation 16: 4704–4717.
  • Makarov, V., A. Koronovskii, V. Maksimenko, A. Hramov, O. Moskalenko, et al., 2016 Emergence of a multilayer structure in adaptive networks of phase oscillators. Chaos, Solitons & Fractals 84: 23–30.
  • Maleki, M. A., A. Ahmadi, S. V. A.-D. Makki, H. Soleimani, and M. Bavandpour, 2015 Networked adaptive non-linear oscillators: a digital synthesis and application. Circuits, Systems, and Signal Processing 34: 483–512.
  • Métivier, D., L.Wetzel, and S. Gupta, 2020 Onset of synchronization in networks of second-order kuramoto oscillators with delayed coupling: Exact results and application to phase-locked loops. Physical Review Research 2: 023183.
  • Miao, C.,W. Luo, Y. Ma,W. Liu, and J. Xiao, 2014 A simple method to improve a torsion pendulum for studying chaos. European Journal of Physics 35: 055012.
  • Munyaev, V. O., D. S. Khorkin, M. I. Bolotov, L. A. Smirnov, and G. V. Osipov, 2021 Appearance of chaos and hyperchaos in evolving pendulum network. Chaos: An Interdisciplinary Journal of Nonlinear Science 31: 063106.
  • Nana, B., P.Woafo, and S. Domngang, 2009 Chaotic synchronization with experimental application to secure communications. Communications in nonlinear science and Numerical Simulation 14: 2266–2276.
  • Nunez-Yepez, H., A. Salas-Brito, C. Vargas, and L. Vicente, 1990 Onset of chaos in an extensible pendulum. Physics Letters A 145: 101–105.
  • Nwachioma, C. and J. H. Pérez-Cruz, 2021 Analysis of a new chaotic system, electronic realization and use in navigation of differential drive mobile robot. Chaos, Solitons & Fractals 144: 110684.
  • Olson, C., J. Nichols, J. Michalowicz, and F. Bucholtz, 2011 Signal design using nonlinear oscillators and evolutionary algorithms: Application to phase-locked loop disruption. Chaos: An Interdisciplinary Journal of Nonlinear Science 21: 023136.
  • Ouannas, A., Z. Odibat, and T. Hayat, 2017 Fractional analysis of co-existence of some types of chaos synchronization. Chaos, Solitons & Fractals 105: 215–223.
  • Paul, B. and T. Banerjee, 2019 Chimeras in digital phase-locked loops. Chaos: An Interdisciplinary Journal of Nonlinear Science 29: 013102.
  • Pereira-Pinto, F. H. I., A. M. Ferreira, and M. A. Savi, 2004 Chaos control in a nonlinear pendulum using a semi-continuous method. Chaos, Solitons & Fractals 22: 653–668.
  • Perkins, E., 2019 Restricted normal mode analysis and chaotic response of p-mode intrinsic localized mode. Nonlinear Dynamics 97: 955–966.
  • Perkins, E. and T. Fitzgerald, 2018 Continuation method on cumulant neglect equations. Journal of Computational and Nonlinear Dynamics 13.
  • Pham, V.-T., S. Jafari, C. Volos, and L. Fortuna, 2019 Simulation and experimental implementation of a line–equilibrium system without linear term. Chaos, Solitons & Fractals 120: 213–221.
  • Piqueira, J. R. C., 2017 Hopf bifurcation and chaos in a third-order phase-locked loop. Communications in Nonlinear Science and Numerical Simulation 42: 178–186.
  • Rhea, B. K., R. C. Harrison, F. T.Werner, E. Perkins, and R. N. Dean, 2020 Approximating an exactly solvable chaotic oscillator using a colpitts oscillator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs 68: 1028–1032.
  • Ricco, R. A., A. Verly, and G. F. V. Amaral, 2016 A circuit for automatic measurement of bifurcation diagram in nonlinear electronic oscillators. IEEE Latin America Transactions 14: 3042– 3047.
  • Righetti, L., J. Buchli, and A. J. Ijspeert, 2006 Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena 216: 269–281.
  • Righetti, L., J. Buchli, and A. J. Ijspeert, 2009 Adaptive frequency oscillators and applications. The Open Cybernetics & Systemics Journal 3.
  • Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke, 1992 Chaos in a double pendulum. American Journal of Physics 60: 491–499.
  • Shougat, M., R. E. Ul, X. Li, T. Mollik, and E. Perkins, 2021a An information theoretic study of a duffing oscillator array reservoir computer. Journal of Computational and Nonlinear Dynamics 16.
  • Shougat, M. R. E. U., X. Li, T. Mollik, and E. Perkins, 2021b A hopf physical reservoir computer. Scientific Reports 11: 1–13.
  • Shougat, M. R. E. U., X. Li, and E. Perkins, 2022 Dynamic effects on reservoir computing with a hopf oscillator. Physical Review E 105: 044212.
  • Silva-Juárez, A., E. Tlelo-Cuautle, L. G. de la Fraga, and R. Li, 2020 Fpaa-based implementation of fractional-order chaotic oscillators using first-order active filter blocks. Journal of advanced research .
  • Stachowiak, T. and T. Okada, 2006 A numerical analysis of chaos in the double pendulum. Chaos, Solitons & Fractals 29: 417–422.
  • Tlelo-Cuautle, E., A. D. Pano-Azucena, O. Guillén-Fernández, and A. Silva-Juárez, 2020 Analog/digital implementation of fractional order chaotic circuits and applications. Springer.
  • Viana Jr, E. R., R. M. Rubinger, H. A. Albuquerque, A. G. de Oliveira, and G. M. Ribeiro, 2010 High-resolution parameter space of an experimental chaotic circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science 20: 023110.
  • Wang, R. and Z. Jing, 2004 Chaos control of chaotic pendulum system. Chaos, Solitons & Fractals 21: 201–207.
  • Xu, J.-q. and G. Jin, 2012 Synchronization of parallel-connected spin-transfer oscillators via magnetic feedback.
  • Xu, X., M.Wiercigroch, and M. Cartmell, 2005 Rotating orbits of a parametrically-excited pendulum. Chaos, Solitons & Fractals 23: 1537–1548.
  • Zhao, Y.-B., D.-Q. Wei, and X.-S. Luo, 2009 Study on chaos control of second-order non-autonomous phase-locked loop based on state observer. Chaos, Solitons & Fractals 39: 1817–1822.
There are 70 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Xiaofu Li 0000-0002-5201-3466

Aubrey Beal 0000-0001-9782-3799

Robert Dean 0000-0001-5857-286X

Edmon Perkins 0000-0003-1988-5075

Project Number W911NF-20-1-0336
Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1

Cite

APA Li, X., Beal, A., Dean, R., Perkins, E. (2023). Chaos in a Pendulum Adaptive Frequency Oscillator Circuit Experiment. Chaos Theory and Applications, 5(1), 11-19. https://doi.org/10.51537/chaos.1204481

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg