Year 2023,
Volume: 5 Issue: 1, 11 - 19, 31.03.2023
Xiaofu Li
,
Aubrey Beal
,
Robert Dean
,
Edmon Perkins
Project Number
W911NF-20-1-0336
References
- Abdullah, H. A. and H. N. Abdullah, 2019 Design and fpaa implementation
of novel chaotic system. Univ Politehnica Bucharest
Scient Bull Ser C-Electrical Eng Comput Sci 81: 153–164.
- Acebrón, J. A., L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler,
2005 The kuramoto model: A simple paradigm for synchronization
phenomena. Reviews of modern physics 77: 137.
- Banerjee, T., B. Paul, and B. Sarkar, 2014 Spatiotemporal dynamics
of a digital phase-locked loop based coupled map lattice system. Chaos: An Interdisciplinary Journal of Nonlinear Science 24: 013116.
- Bick, C., M. J. Panaggio, and E. A. Martens, 2018 Chaos in kuramoto
oscillator networks. Chaos: An Interdisciplinary Journal
of Nonlinear Science 28: 071102.
- Bishop, S., A. Sofroniou, and P. Shi, 2005 Symmetry-breaking in the
response of the parametrically excited pendulum model. Chaos,
Solitons & Fractals 25: 257–264.
- Biswas, D. and T. Banerjee, 2016 A simple chaotic and hyperchaotic
time-delay system: design and electronic circuit implementation.
Nonlinear Dynamics 83: 2331–2347.
- Buchli, J., L. Righetti, and A. J. Ijspeert, 2008 Frequency analysis
with coupled nonlinear oscillators. Physica D: Nonlinear Phenomena
237: 1705–1718.
- Chakraborty, S., M. Dandapathak, and B. Sarkar, 2016 Oscillation
quenching in third order phase locked loop coupled by mean
field diffusive coupling. Chaos: An Interdisciplinary Journal of
Nonlinear Science 26: 113106.
- Çiçek, S., 2019 Fpaa based desıgn and implementation of sprott n
chaotic system. In International Scientific and Vocational Studies
Congress, pp. 476–482, BILMES 2019 Ankara.
- Corron, N. J., 2022 Complex waveform estimation using adaptive
frequency oscillators. Chaos, Solitons & Fractals 158: 111991.
- Dahasert, N., ˙I. Öztürk, and R. Kiliç, 2012 Experimental realizations
of the hr neuron model with programmable hardware and synchronization
applications. Nonlinear Dynamics 70: 2343–2358.
- Dalkiran, F. Y. and J. C. Sprott, 2016 Simple chaotic hyperjerk system.
International Journal of Bifurcation and Chaos 26: 1650189.
- de Paula, A. S., M. A. Savi, and F. H. I. Pereira-Pinto, 2006 Chaos
and transient chaos in an experimental nonlinear pendulum.
Journal of sound and vibration 294: 585–595.
- Dénes, K., B. Sándor, and Z. Néda, 2019 Pattern selection in a ring
of kuramoto oscillators. Communications in Nonlinear Science
and Numerical Simulation 78: 104868.
- Dénes, K., B. Sándor, and Z. Néda, 2021 Synchronization patterns
in rings of time-delayed kuramoto oscillators. Communications
in Nonlinear Science and Numerical Simulation 93: 105505.
- d’Humieres, D., M. Beasley, B. Huberman, and A. Libchaber, 1982
Chaotic states and routes to chaos in the forced pendulum. Physical
Review A 26: 3483.
- Dürig, U., H. Steinauer, and N. Blanc, 1997 Dynamic force microscopy
by means of the phase-controlled oscillator method.
Journal of applied physics 82: 3641–3651.
- Gitterman, M., 2010 The Chaotic Pendulum. World Scientific.
Günay, E. and K. Altun, 2018 Lorenz-like system design using cellular
neural networks. Turkish Journal of Electrical Engineering
& Computer Sciences 26: 1812–1819.
- Han, N. and Q. Cao, 2016 Global bifurcations of a rotating pendulum
with irrational nonlinearity. Communications in Nonlinear
Science and Numerical Simulation 36: 431–445.
- Harb, B. A. and A. M. Harb, 2004 Chaos and bifurcation in a thirdorder
phase locked loop. Chaos, Solitons & Fractals 19: 667–672.
- Harrison, R. C., A. OLDAG, E. PERK˙INS, et al., 2022 Experimental
validation of a chaotic jerk circuit based true random number
generator. Chaos Theory and Applications 4: 64–70.
- Jahanshahi, H., O. Orozco-López, J. M. Munoz-Pacheco, N. D.
Alotaibi, C. Volos, et al., 2021 Simulation and experimental validation
of a non-equilibrium chaotic system. Chaos, Solitons &
Fractals 143: 110539.
- Jallouli, A., N. Kacem, and N. Bouhaddi, 2017 Stabilization of
solitons in coupled nonlinear pendulums with simultaneous external
and parametric excitations. Communications in Nonlinear
Science and Numerical Simulation 42: 1–11.
- Kempter, R., W. Gerstner, and J. L. Van Hemmen, 1999 Hebbian
learning and spiking neurons. Physical Review E 59: 4498.
- Kilic, R. and F. Y. Dalkiran, 2009 Reconfigurable implementations
of chua’s circuit. International Journal of Bifurcation and Chaos
19: 1339–1350.
- Kim, S.-Y. and B. Hu, 1998 Bifurcations and transitions to chaos in
an inverted pendulum. Physical Review E 58: 3028.
- Kutuk, H. and S.-M. Kang, 1996 A field-programmable analog
array (fpaa) using switched-capacitor techniques. In 1996 IEEE
International Symposium on Circuits and Systems. Circuits and Systems
Connecting the World. ISCAS 96, volume 4, pp. 41–44, IEEE.
- Kuznetsov, N. V., G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev,
2017 Hidden attractors in dynamical models of phaselocked
loop circuits: limitations of simulation in matlab and
spice. Communications in Nonlinear Science and Numerical
Simulation 51: 39–49.
- Lai, Q., Z.Wan, P. D. K. Kuate, and H. Fotsin, 2020 Coexisting attractors,
circuit implementation and synchronization control of a
new chaotic system evolved from the simplest memristor chaotic
circuit. Communications in Nonlinear Science and Numerical
Simulation 89: 105341.
- Leutcho, G., J. Kengne, and L. K. Kengne, 2018 Dynamical analysis
of a novel autonomous 4-d hyperjerk circuit with hyperbolic
sine nonlinearity: chaos, antimonotonicity and a plethora of
coexisting attractors. Chaos, Solitons & Fractals 107: 67–87.
- Leutcho, G. D. and J. Kengne, 2018 A unique chaotic snap system
with a smoothly adjustable symmetry and nonlinearity: Chaos,
offset-boosting, antimonotonicity, and coexisting multiple attractors.
Chaos, Solitons & Fractals 113: 275–293.
- Levien, R. and S. Tan, 1993 Double pendulum: An experiment in
chaos. American Journal of Physics 61: 1038–1044.
- Li, C.,W. J.-C. Thio, J. C. Sprott, H. H.-C. Iu, and Y. Xu, 2018 Constructing
infinitely many attractors in a programmable chaotic
circuit. IEEE Access 6: 29003–29012.
- Li, T.-Y. and J. A. Yorke, 2004 Period three implies chaos. In The
theory of chaotic attractors, pp. 77–84, Springer.
- Li, X., P. Kallepalli, T. Mollik, M. R. E. U. Shougat, S. Kennedy, et al.,
2022 The pendulum adaptive frequency oscillator. Mechanical
Systems and Signal Processing 179: 109361.
- Li, X., M. R. E. U. Shougat, S. Kennedy, C. Fendley, R. N. Dean,
et al., 2021a A four-state adaptive hopf oscillator. Plos one 16:
e0249131.
- Li, X., M. R. E. U. Shougat, T. Mollik, A. N. Beal, R. N. Dean, et al.,
2021b Stochastic effects on a hopf adaptive frequency oscillator.
Journal of Applied Physics 129: 224901.
- Luo, A. C. and F. Min, 2011 The chaotic synchronization of a controlled
pendulum with a periodically forced, damped duffing
oscillator. Communications in Nonlinear Science and Numerical
Simulation 16: 4704–4717.
- Makarov, V., A. Koronovskii, V. Maksimenko, A. Hramov,
O. Moskalenko, et al., 2016 Emergence of a multilayer structure
in adaptive networks of phase oscillators. Chaos, Solitons &
Fractals 84: 23–30.
- Maleki, M. A., A. Ahmadi, S. V. A.-D. Makki, H. Soleimani, and
M. Bavandpour, 2015 Networked adaptive non-linear oscillators:
a digital synthesis and application. Circuits, Systems, and Signal
Processing 34: 483–512.
- Métivier, D., L.Wetzel, and S. Gupta, 2020 Onset of synchronization
in networks of second-order kuramoto oscillators with delayed
coupling: Exact results and application to phase-locked
loops. Physical Review Research 2: 023183.
- Miao, C.,W. Luo, Y. Ma,W. Liu, and J. Xiao, 2014 A simple method
to improve a torsion pendulum for studying chaos. European
Journal of Physics 35: 055012.
- Munyaev, V. O., D. S. Khorkin, M. I. Bolotov, L. A. Smirnov, and
G. V. Osipov, 2021 Appearance of chaos and hyperchaos in evolving
pendulum network. Chaos: An Interdisciplinary Journal of
Nonlinear Science 31: 063106.
- Nana, B., P.Woafo, and S. Domngang, 2009 Chaotic synchronization
with experimental application to secure communications.
Communications in nonlinear science and Numerical Simulation
14: 2266–2276.
- Nunez-Yepez, H., A. Salas-Brito, C. Vargas, and L. Vicente, 1990
Onset of chaos in an extensible pendulum. Physics Letters A 145:
101–105.
- Nwachioma, C. and J. H. Pérez-Cruz, 2021 Analysis of a new
chaotic system, electronic realization and use in navigation of
differential drive mobile robot. Chaos, Solitons & Fractals 144:
110684.
- Olson, C., J. Nichols, J. Michalowicz, and F. Bucholtz, 2011 Signal
design using nonlinear oscillators and evolutionary algorithms:
Application to phase-locked loop disruption. Chaos: An Interdisciplinary
Journal of Nonlinear Science 21: 023136.
- Ouannas, A., Z. Odibat, and T. Hayat, 2017 Fractional analysis
of co-existence of some types of chaos synchronization. Chaos,
Solitons & Fractals 105: 215–223.
- Paul, B. and T. Banerjee, 2019 Chimeras in digital phase-locked
loops. Chaos: An Interdisciplinary Journal of Nonlinear Science
29: 013102.
- Pereira-Pinto, F. H. I., A. M. Ferreira, and M. A. Savi, 2004
Chaos control in a nonlinear pendulum using a semi-continuous
method. Chaos, Solitons & Fractals 22: 653–668.
- Perkins, E., 2019 Restricted normal mode analysis and chaotic response
of p-mode intrinsic localized mode. Nonlinear Dynamics
97: 955–966.
- Perkins, E. and T. Fitzgerald, 2018 Continuation method on cumulant
neglect equations. Journal of Computational and Nonlinear
Dynamics 13.
- Pham, V.-T., S. Jafari, C. Volos, and L. Fortuna, 2019 Simulation
and experimental implementation of a line–equilibrium system
without linear term. Chaos, Solitons & Fractals 120: 213–221.
- Piqueira, J. R. C., 2017 Hopf bifurcation and chaos in a third-order
phase-locked loop. Communications in Nonlinear Science and
Numerical Simulation 42: 178–186.
- Rhea, B. K., R. C. Harrison, F. T.Werner, E. Perkins, and R. N. Dean,
2020 Approximating an exactly solvable chaotic oscillator using
a colpitts oscillator circuit. IEEE Transactions on Circuits and
Systems II: Express Briefs 68: 1028–1032.
- Ricco, R. A., A. Verly, and G. F. V. Amaral, 2016 A circuit for
automatic measurement of bifurcation diagram in nonlinear
electronic oscillators. IEEE Latin America Transactions 14: 3042–
3047.
- Righetti, L., J. Buchli, and A. J. Ijspeert, 2006 Dynamic hebbian
learning in adaptive frequency oscillators. Physica D: Nonlinear
Phenomena 216: 269–281.
- Righetti, L., J. Buchli, and A. J. Ijspeert, 2009 Adaptive frequency
oscillators and applications. The Open Cybernetics & Systemics
Journal 3.
- Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke, 1992 Chaos in
a double pendulum. American Journal of Physics 60: 491–499.
- Shougat, M., R. E. Ul, X. Li, T. Mollik, and E. Perkins, 2021a An
information theoretic study of a duffing oscillator array reservoir
computer. Journal of Computational and Nonlinear Dynamics
16.
- Shougat, M. R. E. U., X. Li, T. Mollik, and E. Perkins, 2021b A hopf
physical reservoir computer. Scientific Reports 11: 1–13.
- Shougat, M. R. E. U., X. Li, and E. Perkins, 2022 Dynamic effects
on reservoir computing with a hopf oscillator. Physical Review
E 105: 044212.
- Silva-Juárez, A., E. Tlelo-Cuautle, L. G. de la Fraga, and R. Li, 2020
Fpaa-based implementation of fractional-order chaotic oscillators
using first-order active filter blocks. Journal of advanced
research .
- Stachowiak, T. and T. Okada, 2006 A numerical analysis of chaos
in the double pendulum. Chaos, Solitons & Fractals 29: 417–422.
- Tlelo-Cuautle, E., A. D. Pano-Azucena, O. Guillén-Fernández, and
A. Silva-Juárez, 2020 Analog/digital implementation of fractional
order chaotic circuits and applications. Springer.
- Viana Jr, E. R., R. M. Rubinger, H. A. Albuquerque, A. G.
de Oliveira, and G. M. Ribeiro, 2010 High-resolution parameter
space of an experimental chaotic circuit. Chaos: An Interdisciplinary
Journal of Nonlinear Science 20: 023110.
- Wang, R. and Z. Jing, 2004 Chaos control of chaotic pendulum
system. Chaos, Solitons & Fractals 21: 201–207.
- Xu, J.-q. and G. Jin, 2012 Synchronization of parallel-connected
spin-transfer oscillators via magnetic feedback.
- Xu, X., M.Wiercigroch, and M. Cartmell, 2005 Rotating orbits of a
parametrically-excited pendulum. Chaos, Solitons & Fractals 23:
1537–1548.
- Zhao, Y.-B., D.-Q. Wei, and X.-S. Luo, 2009 Study on chaos control
of second-order non-autonomous phase-locked loop based on
state observer. Chaos, Solitons & Fractals 39: 1817–1822.
Chaos in a Pendulum Adaptive Frequency Oscillator Circuit Experiment
Year 2023,
Volume: 5 Issue: 1, 11 - 19, 31.03.2023
Xiaofu Li
,
Aubrey Beal
,
Robert Dean
,
Edmon Perkins
Abstract
Adaptive oscillators can learn and encode information in dynamic, plastic states. The pendulum has recently been proposed as the base oscillator of an adaptive system. In a mechanical setup, the horizontally forced pendulum adaptive frequency oscillator seeks a resonance condition by modifying the length of the pendulum's rod. This system stores the external forcing frequency when the external amplitude is small, while it can store the resonance frequency, which is affected by the nonlinearity of the pendulum, when the external amplitude is large. Furthermore, for some frequency ranges, the pendulum adaptive frequency oscillator can exhibit chaotic motion when the amplitudes are large. This adaptive oscillator could be used as a smart vibratory energy harvester device, but this chaotic region could degrade its performance by using supplementary energy to modify the rod length. The pendulum adaptive frequency oscillator’s equations of motions are discussed, and a field-programmable analog array is used as an experimental realization of this system as an electronic circuit. Bifurcation diagrams are shown for both the numerical simulations and experiments, while period-3 motion is shown for the numerical simulations. As little work has been done on the stability of adaptive oscillators, the authors believe that this work is the first demonstration of chaos in an adaptive oscillator.
Supporting Institution
North Carolina State University
Project Number
W911NF-20-1-0336
References
- Abdullah, H. A. and H. N. Abdullah, 2019 Design and fpaa implementation
of novel chaotic system. Univ Politehnica Bucharest
Scient Bull Ser C-Electrical Eng Comput Sci 81: 153–164.
- Acebrón, J. A., L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler,
2005 The kuramoto model: A simple paradigm for synchronization
phenomena. Reviews of modern physics 77: 137.
- Banerjee, T., B. Paul, and B. Sarkar, 2014 Spatiotemporal dynamics
of a digital phase-locked loop based coupled map lattice system. Chaos: An Interdisciplinary Journal of Nonlinear Science 24: 013116.
- Bick, C., M. J. Panaggio, and E. A. Martens, 2018 Chaos in kuramoto
oscillator networks. Chaos: An Interdisciplinary Journal
of Nonlinear Science 28: 071102.
- Bishop, S., A. Sofroniou, and P. Shi, 2005 Symmetry-breaking in the
response of the parametrically excited pendulum model. Chaos,
Solitons & Fractals 25: 257–264.
- Biswas, D. and T. Banerjee, 2016 A simple chaotic and hyperchaotic
time-delay system: design and electronic circuit implementation.
Nonlinear Dynamics 83: 2331–2347.
- Buchli, J., L. Righetti, and A. J. Ijspeert, 2008 Frequency analysis
with coupled nonlinear oscillators. Physica D: Nonlinear Phenomena
237: 1705–1718.
- Chakraborty, S., M. Dandapathak, and B. Sarkar, 2016 Oscillation
quenching in third order phase locked loop coupled by mean
field diffusive coupling. Chaos: An Interdisciplinary Journal of
Nonlinear Science 26: 113106.
- Çiçek, S., 2019 Fpaa based desıgn and implementation of sprott n
chaotic system. In International Scientific and Vocational Studies
Congress, pp. 476–482, BILMES 2019 Ankara.
- Corron, N. J., 2022 Complex waveform estimation using adaptive
frequency oscillators. Chaos, Solitons & Fractals 158: 111991.
- Dahasert, N., ˙I. Öztürk, and R. Kiliç, 2012 Experimental realizations
of the hr neuron model with programmable hardware and synchronization
applications. Nonlinear Dynamics 70: 2343–2358.
- Dalkiran, F. Y. and J. C. Sprott, 2016 Simple chaotic hyperjerk system.
International Journal of Bifurcation and Chaos 26: 1650189.
- de Paula, A. S., M. A. Savi, and F. H. I. Pereira-Pinto, 2006 Chaos
and transient chaos in an experimental nonlinear pendulum.
Journal of sound and vibration 294: 585–595.
- Dénes, K., B. Sándor, and Z. Néda, 2019 Pattern selection in a ring
of kuramoto oscillators. Communications in Nonlinear Science
and Numerical Simulation 78: 104868.
- Dénes, K., B. Sándor, and Z. Néda, 2021 Synchronization patterns
in rings of time-delayed kuramoto oscillators. Communications
in Nonlinear Science and Numerical Simulation 93: 105505.
- d’Humieres, D., M. Beasley, B. Huberman, and A. Libchaber, 1982
Chaotic states and routes to chaos in the forced pendulum. Physical
Review A 26: 3483.
- Dürig, U., H. Steinauer, and N. Blanc, 1997 Dynamic force microscopy
by means of the phase-controlled oscillator method.
Journal of applied physics 82: 3641–3651.
- Gitterman, M., 2010 The Chaotic Pendulum. World Scientific.
Günay, E. and K. Altun, 2018 Lorenz-like system design using cellular
neural networks. Turkish Journal of Electrical Engineering
& Computer Sciences 26: 1812–1819.
- Han, N. and Q. Cao, 2016 Global bifurcations of a rotating pendulum
with irrational nonlinearity. Communications in Nonlinear
Science and Numerical Simulation 36: 431–445.
- Harb, B. A. and A. M. Harb, 2004 Chaos and bifurcation in a thirdorder
phase locked loop. Chaos, Solitons & Fractals 19: 667–672.
- Harrison, R. C., A. OLDAG, E. PERK˙INS, et al., 2022 Experimental
validation of a chaotic jerk circuit based true random number
generator. Chaos Theory and Applications 4: 64–70.
- Jahanshahi, H., O. Orozco-López, J. M. Munoz-Pacheco, N. D.
Alotaibi, C. Volos, et al., 2021 Simulation and experimental validation
of a non-equilibrium chaotic system. Chaos, Solitons &
Fractals 143: 110539.
- Jallouli, A., N. Kacem, and N. Bouhaddi, 2017 Stabilization of
solitons in coupled nonlinear pendulums with simultaneous external
and parametric excitations. Communications in Nonlinear
Science and Numerical Simulation 42: 1–11.
- Kempter, R., W. Gerstner, and J. L. Van Hemmen, 1999 Hebbian
learning and spiking neurons. Physical Review E 59: 4498.
- Kilic, R. and F. Y. Dalkiran, 2009 Reconfigurable implementations
of chua’s circuit. International Journal of Bifurcation and Chaos
19: 1339–1350.
- Kim, S.-Y. and B. Hu, 1998 Bifurcations and transitions to chaos in
an inverted pendulum. Physical Review E 58: 3028.
- Kutuk, H. and S.-M. Kang, 1996 A field-programmable analog
array (fpaa) using switched-capacitor techniques. In 1996 IEEE
International Symposium on Circuits and Systems. Circuits and Systems
Connecting the World. ISCAS 96, volume 4, pp. 41–44, IEEE.
- Kuznetsov, N. V., G. A. Leonov, M. V. Yuldashev, and R. V. Yuldashev,
2017 Hidden attractors in dynamical models of phaselocked
loop circuits: limitations of simulation in matlab and
spice. Communications in Nonlinear Science and Numerical
Simulation 51: 39–49.
- Lai, Q., Z.Wan, P. D. K. Kuate, and H. Fotsin, 2020 Coexisting attractors,
circuit implementation and synchronization control of a
new chaotic system evolved from the simplest memristor chaotic
circuit. Communications in Nonlinear Science and Numerical
Simulation 89: 105341.
- Leutcho, G., J. Kengne, and L. K. Kengne, 2018 Dynamical analysis
of a novel autonomous 4-d hyperjerk circuit with hyperbolic
sine nonlinearity: chaos, antimonotonicity and a plethora of
coexisting attractors. Chaos, Solitons & Fractals 107: 67–87.
- Leutcho, G. D. and J. Kengne, 2018 A unique chaotic snap system
with a smoothly adjustable symmetry and nonlinearity: Chaos,
offset-boosting, antimonotonicity, and coexisting multiple attractors.
Chaos, Solitons & Fractals 113: 275–293.
- Levien, R. and S. Tan, 1993 Double pendulum: An experiment in
chaos. American Journal of Physics 61: 1038–1044.
- Li, C.,W. J.-C. Thio, J. C. Sprott, H. H.-C. Iu, and Y. Xu, 2018 Constructing
infinitely many attractors in a programmable chaotic
circuit. IEEE Access 6: 29003–29012.
- Li, T.-Y. and J. A. Yorke, 2004 Period three implies chaos. In The
theory of chaotic attractors, pp. 77–84, Springer.
- Li, X., P. Kallepalli, T. Mollik, M. R. E. U. Shougat, S. Kennedy, et al.,
2022 The pendulum adaptive frequency oscillator. Mechanical
Systems and Signal Processing 179: 109361.
- Li, X., M. R. E. U. Shougat, S. Kennedy, C. Fendley, R. N. Dean,
et al., 2021a A four-state adaptive hopf oscillator. Plos one 16:
e0249131.
- Li, X., M. R. E. U. Shougat, T. Mollik, A. N. Beal, R. N. Dean, et al.,
2021b Stochastic effects on a hopf adaptive frequency oscillator.
Journal of Applied Physics 129: 224901.
- Luo, A. C. and F. Min, 2011 The chaotic synchronization of a controlled
pendulum with a periodically forced, damped duffing
oscillator. Communications in Nonlinear Science and Numerical
Simulation 16: 4704–4717.
- Makarov, V., A. Koronovskii, V. Maksimenko, A. Hramov,
O. Moskalenko, et al., 2016 Emergence of a multilayer structure
in adaptive networks of phase oscillators. Chaos, Solitons &
Fractals 84: 23–30.
- Maleki, M. A., A. Ahmadi, S. V. A.-D. Makki, H. Soleimani, and
M. Bavandpour, 2015 Networked adaptive non-linear oscillators:
a digital synthesis and application. Circuits, Systems, and Signal
Processing 34: 483–512.
- Métivier, D., L.Wetzel, and S. Gupta, 2020 Onset of synchronization
in networks of second-order kuramoto oscillators with delayed
coupling: Exact results and application to phase-locked
loops. Physical Review Research 2: 023183.
- Miao, C.,W. Luo, Y. Ma,W. Liu, and J. Xiao, 2014 A simple method
to improve a torsion pendulum for studying chaos. European
Journal of Physics 35: 055012.
- Munyaev, V. O., D. S. Khorkin, M. I. Bolotov, L. A. Smirnov, and
G. V. Osipov, 2021 Appearance of chaos and hyperchaos in evolving
pendulum network. Chaos: An Interdisciplinary Journal of
Nonlinear Science 31: 063106.
- Nana, B., P.Woafo, and S. Domngang, 2009 Chaotic synchronization
with experimental application to secure communications.
Communications in nonlinear science and Numerical Simulation
14: 2266–2276.
- Nunez-Yepez, H., A. Salas-Brito, C. Vargas, and L. Vicente, 1990
Onset of chaos in an extensible pendulum. Physics Letters A 145:
101–105.
- Nwachioma, C. and J. H. Pérez-Cruz, 2021 Analysis of a new
chaotic system, electronic realization and use in navigation of
differential drive mobile robot. Chaos, Solitons & Fractals 144:
110684.
- Olson, C., J. Nichols, J. Michalowicz, and F. Bucholtz, 2011 Signal
design using nonlinear oscillators and evolutionary algorithms:
Application to phase-locked loop disruption. Chaos: An Interdisciplinary
Journal of Nonlinear Science 21: 023136.
- Ouannas, A., Z. Odibat, and T. Hayat, 2017 Fractional analysis
of co-existence of some types of chaos synchronization. Chaos,
Solitons & Fractals 105: 215–223.
- Paul, B. and T. Banerjee, 2019 Chimeras in digital phase-locked
loops. Chaos: An Interdisciplinary Journal of Nonlinear Science
29: 013102.
- Pereira-Pinto, F. H. I., A. M. Ferreira, and M. A. Savi, 2004
Chaos control in a nonlinear pendulum using a semi-continuous
method. Chaos, Solitons & Fractals 22: 653–668.
- Perkins, E., 2019 Restricted normal mode analysis and chaotic response
of p-mode intrinsic localized mode. Nonlinear Dynamics
97: 955–966.
- Perkins, E. and T. Fitzgerald, 2018 Continuation method on cumulant
neglect equations. Journal of Computational and Nonlinear
Dynamics 13.
- Pham, V.-T., S. Jafari, C. Volos, and L. Fortuna, 2019 Simulation
and experimental implementation of a line–equilibrium system
without linear term. Chaos, Solitons & Fractals 120: 213–221.
- Piqueira, J. R. C., 2017 Hopf bifurcation and chaos in a third-order
phase-locked loop. Communications in Nonlinear Science and
Numerical Simulation 42: 178–186.
- Rhea, B. K., R. C. Harrison, F. T.Werner, E. Perkins, and R. N. Dean,
2020 Approximating an exactly solvable chaotic oscillator using
a colpitts oscillator circuit. IEEE Transactions on Circuits and
Systems II: Express Briefs 68: 1028–1032.
- Ricco, R. A., A. Verly, and G. F. V. Amaral, 2016 A circuit for
automatic measurement of bifurcation diagram in nonlinear
electronic oscillators. IEEE Latin America Transactions 14: 3042–
3047.
- Righetti, L., J. Buchli, and A. J. Ijspeert, 2006 Dynamic hebbian
learning in adaptive frequency oscillators. Physica D: Nonlinear
Phenomena 216: 269–281.
- Righetti, L., J. Buchli, and A. J. Ijspeert, 2009 Adaptive frequency
oscillators and applications. The Open Cybernetics & Systemics
Journal 3.
- Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke, 1992 Chaos in
a double pendulum. American Journal of Physics 60: 491–499.
- Shougat, M., R. E. Ul, X. Li, T. Mollik, and E. Perkins, 2021a An
information theoretic study of a duffing oscillator array reservoir
computer. Journal of Computational and Nonlinear Dynamics
16.
- Shougat, M. R. E. U., X. Li, T. Mollik, and E. Perkins, 2021b A hopf
physical reservoir computer. Scientific Reports 11: 1–13.
- Shougat, M. R. E. U., X. Li, and E. Perkins, 2022 Dynamic effects
on reservoir computing with a hopf oscillator. Physical Review
E 105: 044212.
- Silva-Juárez, A., E. Tlelo-Cuautle, L. G. de la Fraga, and R. Li, 2020
Fpaa-based implementation of fractional-order chaotic oscillators
using first-order active filter blocks. Journal of advanced
research .
- Stachowiak, T. and T. Okada, 2006 A numerical analysis of chaos
in the double pendulum. Chaos, Solitons & Fractals 29: 417–422.
- Tlelo-Cuautle, E., A. D. Pano-Azucena, O. Guillén-Fernández, and
A. Silva-Juárez, 2020 Analog/digital implementation of fractional
order chaotic circuits and applications. Springer.
- Viana Jr, E. R., R. M. Rubinger, H. A. Albuquerque, A. G.
de Oliveira, and G. M. Ribeiro, 2010 High-resolution parameter
space of an experimental chaotic circuit. Chaos: An Interdisciplinary
Journal of Nonlinear Science 20: 023110.
- Wang, R. and Z. Jing, 2004 Chaos control of chaotic pendulum
system. Chaos, Solitons & Fractals 21: 201–207.
- Xu, J.-q. and G. Jin, 2012 Synchronization of parallel-connected
spin-transfer oscillators via magnetic feedback.
- Xu, X., M.Wiercigroch, and M. Cartmell, 2005 Rotating orbits of a
parametrically-excited pendulum. Chaos, Solitons & Fractals 23:
1537–1548.
- Zhao, Y.-B., D.-Q. Wei, and X.-S. Luo, 2009 Study on chaos control
of second-order non-autonomous phase-locked loop based on
state observer. Chaos, Solitons & Fractals 39: 1817–1822.