Year 2023,
Volume: 5 Issue: 4, 293 - 299, 31.12.2023
Parveen Bawa
,
Neha Bhardwaj
,
Sumit Kaur Bhatia
References
- Acu, A. M., 2015 Stancu–Schurer–Kantorovich operators based
on q-integers. Applied Mathematics and Computation 259: 896–
907.
- Acu, A.-M., N. Manav, and D. F. Sofonea, 2018 Approximation
properties of λ-Kantorovich operators. Journal of inequalities
and applications 2018: 1–12.
- Agratini, O., 2001 An approximation process of Kantorovich type.
Miskolc Mathematical Notes 2: 3–10.
- Agrawal, P., N. Bhardwaj, and P. Bawa, 2022 Bézier variant of modified
α-bernstein operators. Rendiconti del Circolo Matematico
di Palermo Series 2 71: 807–827.
- Agrawal, P., M. Goyal, and A. Kajla, 2015 q-Bernstein-Schurer-
Kantorovich type operators. Bollettino dell’Unione Matematica
Italiana 8: 169–180.
- Altomare, F. and M. Campiti, 2011 Korovkin-type approximation
theory and its applications, volume 17. Walter de Gruyter.
- Altomare, F., M. C. Montano, and V. Leonessa, 2013 On a generalization
of Szász–Mirakjan–Kantorovich operators. Results in
Mathematics 63: 837–863.
- Andrews, G. E., R. Askey, and R. Roy, 1999 Special functions, volume
71. Cambridge university press.
- Angeloni, L., D. Costarelli, and G. Vinti, 2020 Approximation properties
of mixed sampling-Kantorovich operators. Revista de la
Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A.
Matemáticas 115: 1–14.
- Angeloni, L., G. Vinti, et al., 2005 Rate of approximation for nonlinear
integral operators with application to signal processing.
Differential and Integral Equations 18: 855–890.
- Araci, S., A. Kajla, and P. Agarwal, 2019 A Kantorovich variant of
a generalized Bernstein operators .
- Barbosu, D., 2004 Kantorovich-Stancu type operators. J. Inequal.
Pure Appl. Math 5: 6.
- Bardaro, C. and I. Mantellini, 2012 On convergence properties for
a class of Kantorovich discrete operators. Numerical functional
analysis and optimization 33: 374–396.
- Bardaro, C., G. Vinti, P. Butzer, and R. Stens, 2007 Kantrovichtype
generalized sampling series in the setting of orlicz spaces.
Sampling Theory in Signal and Image Processing 6: 29.
- Bartle, R. G., 1976 The element of real analysis, john willy & sons.
Inc., New York .
- Bawa, P., N. Bhardwaj, and P. Agrawal, 2022 Quantitative
voronovskaya type theorems and gbs operators of kantorovich
variant of lupa¸s-stancu operators based on pólya distribution.
Mathematical Foundations of Computing 5: 269–293.
- Bernšteın, S., 1912 Démonstration du théoreme de Weierstrass
fondée sur le calcul des probabilities. Comm. Soc. Math. Kharkov
13: 1–2.
- Cai, Q.-B., W.-T. Cheng, and B. Çekim, 2019 Bivariate α, q-
Bernstein–Kantorovich operators and gbs operators of bivariate
α, q-bernstein–kantorovich type. Mathematics 7: 1161.
- Cai, Q.-B., B.-Y. Lian, and G. Zhou, 2018 Approximation properties
of λ-Bernstein operators. Journal of Inequalities and Applications
2018: 1–11.
- Cai, Q.-B. and X.-W. Xu, 2018 Shape-preserving properties of a new
family of generalized Bernstein operators. Journal of inequalities
and applications 2018: 1–14.
- Chen, X., J. Tan, Z. Liu, and J. Xie, 2017 Approximation of functions
by a new family of generalized Bernstein operators. Journal of
Mathematical Analysis and Applications 450: 244–261.
- Cheney, E.W., 1966 Introduction to approximation theory .
Cluni, F., D. Costarelli, A. M. Minotti, and G. Vinti, 2013 Multivariate
sampling Kantorovich operators: approximation and
applications to civil engineering. EURASIP, Proc. SampTA pp.
400–403.
- Costarelli, D., F. Cluni, A. M. Minotti, and G. Vinti, 2014a Applications
of sampling Kantorovich operators to thermographic
images for seismic engineering. arXiv preprint arXiv:1411.2584 .
- Costarelli, D. and G. Vinti, 2011 Approximation by multivariate
generalized sampling Kantorovich operators in the setting of
orlicz spaces. Bollettino dell’Unione Matematica Italiana 4: 445–
468.
- Costarelli, D. and G. Vinti, 2013 Approximation by nonlinear multivariate
sampling Kantorovich type operators and applications
to image processing. Numerical Functional Analysis and Optimization
34: 819–844.
- Costarelli, D. and G. Vinti, 2014 Sampling Kantorovich operators
and their applications to approximation problems and to digital
image processing. In Proceedings of 8th international conference on
applied mathematics, simulation, modelling (ASM’14), Florence, Italy
November, pp. 22–24.
- Costarelli, D., G. Vinti, et al., 2014b Order of approximation for
sampling Kantorovich operators. Journal of Integral Equations
and Applications 26: 345–367.
- Dalmanog, Ö., O. Dog, et al., 2010 On statistical approximation
properties of Kantorovich type q-Bernstein operators. Mathematical
and Computer Modelling 52: 760–771.
- Dalmano˘ glu, Ö., 2007 Approximation by Kantorovich type q-
Bernstein operators .
- de la Cal, J. and A. M. Valle, 2000 A generalization of Bernstein–
Kantoroviˇc operators. Journal of mathematical analysis and applications
252: 750–766.
- Deo, N., M. Dhamija, and D. Micl˘au¸s, 2016 Stancu–Kantorovich
operators based on inverse Pólya–Eggenberger distribution. Applied
Mathematics and Computation 273: 281–289.
- Dogru, O. and N. Ozalp, 2001 Approximation by Kantorovich
type generalization of meyer-konig and zeller operators. Glasnik
matematiˇcki 36: 311–318.
- Duman, O., M. Özarslan, and O. Do˘gru, 2006 On integral type
generalizations of positive linear operators. Studia Mathematica
174: 1–12.
- Eggenberger, F. and G. Pólya, 1923 Über die statistik verketteter
vorgänge. ZAMM-Journal of Applied Mathematics and Mechanics/
Zeitschrift für Angewandte Mathematik und Mechanik 3:
279–289.
- Gadjiev, A. and A. Ghorbanalizadeh, 2010 Approximation properties
of a new type Bernstein–Stancu polynomials of one and two
variables. Applied mathematics and computation 216: 890–901.
- Gonska, H., M. Heilmann, and I. Ra¸sa, 2011 Kantorovich operators
of order k. Numerical functional analysis and optimization 32:
717–738.
- Hounkonnou, M. N., J. Désiré, and B. Kyemba, 2013 R (p, q)-
calculus: differentiation and integration. SUT J. Math 49: 145–
167.
- ˙Içöz, G., 2012 A Kantorovich variant of a new type Bernstein–
Stancu polynomials. Applied Mathematics and Computation
218: 8552–8560.
- Igoz, G., 2012 A kantorovich variant of a new type bernstein-stancu
polynomails. AppI Math Comput 218: 8552–8560.
- Kac, V. and P. Cheung, 2001 Quantum calculus. Springer Science &
Business Media.
- Kajla, A. and S. Araci, 2017 Blending type approximation by
Stancu-Kantorovich operators based on pólya-eggenberger distribution.
Open Physics 15: 335–343.
- Kantorovich, L., 1930 Sur certains développements suivant les
polynômes de la forme de s. Bernstein, I, II, CR Acad. URSS 563:
568.
- Karaca, Y., 2022 Global attractivity, asymptotic stability and blowup
points for nonlinear functional-integral equations’solutions
and applications in banach space bc (r+) with computational
complexity. Fractals 30: 2240188.
- Karaca, Y., M. Moonis, Y.-D. Zhang, and C. Gezgez, 2019 Mobile
cloud computing based stroke healthcare system. International
Journal of Information Management 45: 250–261.
- Katriel, J. and M. Kibler, 1992 Normal ordering for deformed boson
operators and operator-valued deformed stirling numbers.
Journal of Physics A: Mathematical and General 25: 2683.
- Lubinsky, D., 1995Weierstrass’theorem in the twentieth century:
A selection. Quaestiones Mathematicae 18: 91–130.
- Lupas, A., 1987 A q-analogue of the Bernstein operator. In Seminar
on numerical and statistical calculus, University of Cluj-Napoca,
volume 9.
- Marinkovi´c, S., P. Rajkovi´c, and M. Stankovi´c, 2008 The inequalities
for some types of q-integrals. Computers & Mathematics with
Applications 56: 2490–2498.
- Mohiuddine, S., T. Acar, and A. Alotaibi, 2017 Construction of a
new family of Bernstein-Kantorovich operators. Mathematical
Methods in the Applied Sciences 40: 7749–7759.
- Muraru, C.-V., 2011 Note on q-Bernstein-Schurer operators. Stud.
Univ. Babes-Bolyai Math 56: 489–495.
- Mursaleen, M., K. J. Ansari, and A. Khan, 2015 On (p, q)-analogue
of Bernstein operators. Applied Mathematics and Computation
266: 874–882.
- Mursaleen, M., K. J. Ansari, and A. Khan, 2016 Some approximation
results for Bernstein-Kantorovich operators based on (p,
q)-calculus. UPB Sci. Bull., Ser. A 78: 129–142.
- Mursaleen, M., K. J. Ansari, and A. Khan, 2017 Approximation by
kantorovich type q-Bernstein-Stancu operators. Complex Analysis
and Operator Theory 11: 85–107.
- Ostrovska, S., 2016 The q-versions of the Bernstein operator: from
mere analogies to further developments. Results in Mathematics
69: 275–295.
- Ozarslan, M. A. and O. Duman, 2016 Smoothness properties of
modified Bernstein-Kantorovich operators .
- Özarslan, M. A., O. Duman, and H. Srivastava, 2008 Statistical
approximation results for Kantorovich-type operators involving
some special polynomials. Mathematical and computer modelling
48: 388–401.
- Özarslan, M. A. and T. Vedi, 2013 q-Bernstein-Schurer-Kantorovich
operators. Journal of Inequalities and Applications 2013: 444.
- Phillips, G. M., 2003 Bernstein polynomials. In Interpolation and
Approximation by Polynomials, pp. 247–290, Springer.
- Pinkus, A., 2000 Weierstrass and approximation theory. Journal of
Approximation Theory 107: 1–66.
- Radu, C., 2008 Statistical approximation properties of Kantorovich
operators based on q-integers, creat. math. Inform 17: 75–84.
- Rashid, S., S. Sultana, Y. Karaca, A. Khalid, and Y.-M. Chu, 2022
Some further extensions considering discrete proportional fractional
operators. Fractals 30: 2240026.
- Ren, M.-Y. and X.-M. Zeng, 2013 On statistical approximation
properties of modified q-Bernstein-Schurer operators. Bulletin
of the Korean Mathematical Society 50: 1145–1156.
- Sahai, V. and S. Yadav, 2007 Representations of two parameter
quantum algebras and p, q-special functions. Journal of mathematical
analysis and applications 335: 268–279.
- Vinti, G. and L. Zampogni, 2009 Approximation by means of nonlinear
Kantorovich sampling type operators in orlicz spaces.
Journal of Approximation Theory 161: 511–528.
Different Variants of Bernstein Kantorovich Operators and Their Applications in Sciences and Engineering Field
Year 2023,
Volume: 5 Issue: 4, 293 - 299, 31.12.2023
Parveen Bawa
,
Neha Bhardwaj
,
Sumit Kaur Bhatia
Abstract
In this article, we investigate various Bernstein-Kantorovich variants together with their approximation properties. Nowadays, these variants of Bernstein-Kantorovich operators have been a source of inspiration for researchers as it helps to approximate integral functions also which is not feasible in the case of discrete operators. Chaos theory has also been referred to as complexity theory. Using chaos theory complexity is also reduced as in approximation theory. Thus in order to reduce complexity and to have better understanding of images in sciences and engineering field, sampling Kantorovich operators of approximation theory are widely used in this regard for enhancement of images. Thus, we discuss the important applications of Kantorovich operators depicting pragmatic and theoretical aspects of approximation theory.
References
- Acu, A. M., 2015 Stancu–Schurer–Kantorovich operators based
on q-integers. Applied Mathematics and Computation 259: 896–
907.
- Acu, A.-M., N. Manav, and D. F. Sofonea, 2018 Approximation
properties of λ-Kantorovich operators. Journal of inequalities
and applications 2018: 1–12.
- Agratini, O., 2001 An approximation process of Kantorovich type.
Miskolc Mathematical Notes 2: 3–10.
- Agrawal, P., N. Bhardwaj, and P. Bawa, 2022 Bézier variant of modified
α-bernstein operators. Rendiconti del Circolo Matematico
di Palermo Series 2 71: 807–827.
- Agrawal, P., M. Goyal, and A. Kajla, 2015 q-Bernstein-Schurer-
Kantorovich type operators. Bollettino dell’Unione Matematica
Italiana 8: 169–180.
- Altomare, F. and M. Campiti, 2011 Korovkin-type approximation
theory and its applications, volume 17. Walter de Gruyter.
- Altomare, F., M. C. Montano, and V. Leonessa, 2013 On a generalization
of Szász–Mirakjan–Kantorovich operators. Results in
Mathematics 63: 837–863.
- Andrews, G. E., R. Askey, and R. Roy, 1999 Special functions, volume
71. Cambridge university press.
- Angeloni, L., D. Costarelli, and G. Vinti, 2020 Approximation properties
of mixed sampling-Kantorovich operators. Revista de la
Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A.
Matemáticas 115: 1–14.
- Angeloni, L., G. Vinti, et al., 2005 Rate of approximation for nonlinear
integral operators with application to signal processing.
Differential and Integral Equations 18: 855–890.
- Araci, S., A. Kajla, and P. Agarwal, 2019 A Kantorovich variant of
a generalized Bernstein operators .
- Barbosu, D., 2004 Kantorovich-Stancu type operators. J. Inequal.
Pure Appl. Math 5: 6.
- Bardaro, C. and I. Mantellini, 2012 On convergence properties for
a class of Kantorovich discrete operators. Numerical functional
analysis and optimization 33: 374–396.
- Bardaro, C., G. Vinti, P. Butzer, and R. Stens, 2007 Kantrovichtype
generalized sampling series in the setting of orlicz spaces.
Sampling Theory in Signal and Image Processing 6: 29.
- Bartle, R. G., 1976 The element of real analysis, john willy & sons.
Inc., New York .
- Bawa, P., N. Bhardwaj, and P. Agrawal, 2022 Quantitative
voronovskaya type theorems and gbs operators of kantorovich
variant of lupa¸s-stancu operators based on pólya distribution.
Mathematical Foundations of Computing 5: 269–293.
- Bernšteın, S., 1912 Démonstration du théoreme de Weierstrass
fondée sur le calcul des probabilities. Comm. Soc. Math. Kharkov
13: 1–2.
- Cai, Q.-B., W.-T. Cheng, and B. Çekim, 2019 Bivariate α, q-
Bernstein–Kantorovich operators and gbs operators of bivariate
α, q-bernstein–kantorovich type. Mathematics 7: 1161.
- Cai, Q.-B., B.-Y. Lian, and G. Zhou, 2018 Approximation properties
of λ-Bernstein operators. Journal of Inequalities and Applications
2018: 1–11.
- Cai, Q.-B. and X.-W. Xu, 2018 Shape-preserving properties of a new
family of generalized Bernstein operators. Journal of inequalities
and applications 2018: 1–14.
- Chen, X., J. Tan, Z. Liu, and J. Xie, 2017 Approximation of functions
by a new family of generalized Bernstein operators. Journal of
Mathematical Analysis and Applications 450: 244–261.
- Cheney, E.W., 1966 Introduction to approximation theory .
Cluni, F., D. Costarelli, A. M. Minotti, and G. Vinti, 2013 Multivariate
sampling Kantorovich operators: approximation and
applications to civil engineering. EURASIP, Proc. SampTA pp.
400–403.
- Costarelli, D., F. Cluni, A. M. Minotti, and G. Vinti, 2014a Applications
of sampling Kantorovich operators to thermographic
images for seismic engineering. arXiv preprint arXiv:1411.2584 .
- Costarelli, D. and G. Vinti, 2011 Approximation by multivariate
generalized sampling Kantorovich operators in the setting of
orlicz spaces. Bollettino dell’Unione Matematica Italiana 4: 445–
468.
- Costarelli, D. and G. Vinti, 2013 Approximation by nonlinear multivariate
sampling Kantorovich type operators and applications
to image processing. Numerical Functional Analysis and Optimization
34: 819–844.
- Costarelli, D. and G. Vinti, 2014 Sampling Kantorovich operators
and their applications to approximation problems and to digital
image processing. In Proceedings of 8th international conference on
applied mathematics, simulation, modelling (ASM’14), Florence, Italy
November, pp. 22–24.
- Costarelli, D., G. Vinti, et al., 2014b Order of approximation for
sampling Kantorovich operators. Journal of Integral Equations
and Applications 26: 345–367.
- Dalmanog, Ö., O. Dog, et al., 2010 On statistical approximation
properties of Kantorovich type q-Bernstein operators. Mathematical
and Computer Modelling 52: 760–771.
- Dalmano˘ glu, Ö., 2007 Approximation by Kantorovich type q-
Bernstein operators .
- de la Cal, J. and A. M. Valle, 2000 A generalization of Bernstein–
Kantoroviˇc operators. Journal of mathematical analysis and applications
252: 750–766.
- Deo, N., M. Dhamija, and D. Micl˘au¸s, 2016 Stancu–Kantorovich
operators based on inverse Pólya–Eggenberger distribution. Applied
Mathematics and Computation 273: 281–289.
- Dogru, O. and N. Ozalp, 2001 Approximation by Kantorovich
type generalization of meyer-konig and zeller operators. Glasnik
matematiˇcki 36: 311–318.
- Duman, O., M. Özarslan, and O. Do˘gru, 2006 On integral type
generalizations of positive linear operators. Studia Mathematica
174: 1–12.
- Eggenberger, F. and G. Pólya, 1923 Über die statistik verketteter
vorgänge. ZAMM-Journal of Applied Mathematics and Mechanics/
Zeitschrift für Angewandte Mathematik und Mechanik 3:
279–289.
- Gadjiev, A. and A. Ghorbanalizadeh, 2010 Approximation properties
of a new type Bernstein–Stancu polynomials of one and two
variables. Applied mathematics and computation 216: 890–901.
- Gonska, H., M. Heilmann, and I. Ra¸sa, 2011 Kantorovich operators
of order k. Numerical functional analysis and optimization 32:
717–738.
- Hounkonnou, M. N., J. Désiré, and B. Kyemba, 2013 R (p, q)-
calculus: differentiation and integration. SUT J. Math 49: 145–
167.
- ˙Içöz, G., 2012 A Kantorovich variant of a new type Bernstein–
Stancu polynomials. Applied Mathematics and Computation
218: 8552–8560.
- Igoz, G., 2012 A kantorovich variant of a new type bernstein-stancu
polynomails. AppI Math Comput 218: 8552–8560.
- Kac, V. and P. Cheung, 2001 Quantum calculus. Springer Science &
Business Media.
- Kajla, A. and S. Araci, 2017 Blending type approximation by
Stancu-Kantorovich operators based on pólya-eggenberger distribution.
Open Physics 15: 335–343.
- Kantorovich, L., 1930 Sur certains développements suivant les
polynômes de la forme de s. Bernstein, I, II, CR Acad. URSS 563:
568.
- Karaca, Y., 2022 Global attractivity, asymptotic stability and blowup
points for nonlinear functional-integral equations’solutions
and applications in banach space bc (r+) with computational
complexity. Fractals 30: 2240188.
- Karaca, Y., M. Moonis, Y.-D. Zhang, and C. Gezgez, 2019 Mobile
cloud computing based stroke healthcare system. International
Journal of Information Management 45: 250–261.
- Katriel, J. and M. Kibler, 1992 Normal ordering for deformed boson
operators and operator-valued deformed stirling numbers.
Journal of Physics A: Mathematical and General 25: 2683.
- Lubinsky, D., 1995Weierstrass’theorem in the twentieth century:
A selection. Quaestiones Mathematicae 18: 91–130.
- Lupas, A., 1987 A q-analogue of the Bernstein operator. In Seminar
on numerical and statistical calculus, University of Cluj-Napoca,
volume 9.
- Marinkovi´c, S., P. Rajkovi´c, and M. Stankovi´c, 2008 The inequalities
for some types of q-integrals. Computers & Mathematics with
Applications 56: 2490–2498.
- Mohiuddine, S., T. Acar, and A. Alotaibi, 2017 Construction of a
new family of Bernstein-Kantorovich operators. Mathematical
Methods in the Applied Sciences 40: 7749–7759.
- Muraru, C.-V., 2011 Note on q-Bernstein-Schurer operators. Stud.
Univ. Babes-Bolyai Math 56: 489–495.
- Mursaleen, M., K. J. Ansari, and A. Khan, 2015 On (p, q)-analogue
of Bernstein operators. Applied Mathematics and Computation
266: 874–882.
- Mursaleen, M., K. J. Ansari, and A. Khan, 2016 Some approximation
results for Bernstein-Kantorovich operators based on (p,
q)-calculus. UPB Sci. Bull., Ser. A 78: 129–142.
- Mursaleen, M., K. J. Ansari, and A. Khan, 2017 Approximation by
kantorovich type q-Bernstein-Stancu operators. Complex Analysis
and Operator Theory 11: 85–107.
- Ostrovska, S., 2016 The q-versions of the Bernstein operator: from
mere analogies to further developments. Results in Mathematics
69: 275–295.
- Ozarslan, M. A. and O. Duman, 2016 Smoothness properties of
modified Bernstein-Kantorovich operators .
- Özarslan, M. A., O. Duman, and H. Srivastava, 2008 Statistical
approximation results for Kantorovich-type operators involving
some special polynomials. Mathematical and computer modelling
48: 388–401.
- Özarslan, M. A. and T. Vedi, 2013 q-Bernstein-Schurer-Kantorovich
operators. Journal of Inequalities and Applications 2013: 444.
- Phillips, G. M., 2003 Bernstein polynomials. In Interpolation and
Approximation by Polynomials, pp. 247–290, Springer.
- Pinkus, A., 2000 Weierstrass and approximation theory. Journal of
Approximation Theory 107: 1–66.
- Radu, C., 2008 Statistical approximation properties of Kantorovich
operators based on q-integers, creat. math. Inform 17: 75–84.
- Rashid, S., S. Sultana, Y. Karaca, A. Khalid, and Y.-M. Chu, 2022
Some further extensions considering discrete proportional fractional
operators. Fractals 30: 2240026.
- Ren, M.-Y. and X.-M. Zeng, 2013 On statistical approximation
properties of modified q-Bernstein-Schurer operators. Bulletin
of the Korean Mathematical Society 50: 1145–1156.
- Sahai, V. and S. Yadav, 2007 Representations of two parameter
quantum algebras and p, q-special functions. Journal of mathematical
analysis and applications 335: 268–279.
- Vinti, G. and L. Zampogni, 2009 Approximation by means of nonlinear
Kantorovich sampling type operators in orlicz spaces.
Journal of Approximation Theory 161: 511–528.