Novel Traveling Wave Solutions of Jaulent-Miodek Equations and Coupled Konno-Oono Systems and Their Dynamics
Year 2023,
Volume: 5 Issue: 4, 281 - 285, 31.12.2023
Raj Kumar
Krıpa Shankar Pandey
Avneesh Kumar
Anshu Kumar
Abstract
This research article deals with analytical solutions to two problems. The first is the (1+1)-coupled Jaulent-Miodek system of equations, which is associated with the energy-dependent Schrödinger potential, whereas the second problem, the system of coupled Konno-Oono equations relates to complexity and chaos in electromagnetic fields. Similarity reductions via Lie-symmetry analysis is performed for the systems to derive their analytical solutions. Since Lie symmetry involves arbitrary constants in the infinitesimals, this opens up more possibilities for getting a rich variety of analytical solutions for both real-life problems. The analytical solutions are supplemented graphically to understand them in a better way. Traveling wave profiles are obtained eventually. Solution for CKOEs are different from the earlier research (Kumar and Kumar 2022a; Kumar et al. 2022) as far as the authors are aware.
References
- Abdelrahman, M. and H. Alkhidhr, 2020 Fundamental solutions
for the new coupled Konno-Oono equation in magnetic field.
Results Phys. 19: 103445.
- Abdullah, F. A., M. T. Islam, J. F. Gómez-Aguilar, and M. A. Akbar,
2023 Impressive and innovative soliton shapes for nonlinear
Konno–Oono system relating to electromagnetic field. Opt.
Quantum Electron. 55: 69.
- Alam, M. N. and F. B. M. Belgacem, 2016 New generalized (G’/G)-
expansion method applications to coupled Konno-Oono equation.
Adv. Pure Math. 06: 168–179.
- Bashar, M. A., G. Mondal, K. Khan, and A. Bekir, 2016 Traveling
wave solutions of new coupled konno-oono equation. New
Trends in Mathematical Sciences 4: 296–303.
- Bluman, G. and J. Cole, 1974 Similarity Methods for Differential
Equations. Springer New York.
- Hirota, R. and S. Tsujimoto, 1994 Note on “new coupled integrable
dispersionless equations”. J. Phys. Soc. Japan 63: 3533–3533.
- Jaulent, M. and I. Miodek, 1976 Nonlinear evolution equations
associated with energy dependent schrödinger potentials. Lett.
Math. Phys. 1: 243–250.
- Kakuhata, H. and K. Konno, 1996 A Generalization of Coupled
Integrable, Dispersionless System. J. Phys. Soc. Japan 65: 340–
341.
- Karaca, Y., 2023 Computational complexity-based fractional-order
neural network models for the diagnostic treatments and predictive
transdifferentiability of heterogeneous cancer cell propensity.
Chaos Theory and Applications 5: 34–51.
- Karaca, Y. and D. Baleanu, 2022 Evolutionary mathematical science,
fractional modeling and artificial intelligence of nonlinear
dynamics in complex systems. Chaos Theory and Applications
4: 111–118.
- Khalique, M., 2012 Exact solutions and conservation laws of a
coupled integrable dispersionless system. Filomat 26: 957–964.
- Khan, K. and M. A. Akbar, 2013 TravelingWave Solutions of Some
Coupled Nonlinear Evolution Equations. ISRN Math. Phys. 2013:
1–8.
- Khater, M. M., A. R. Seadawy, and D. Lu, 2018 Dispersive solitary
wave solutions of new coupled Konno-Oono, Higgs field and
Maccari equations and their applications. J. King Saud Univ. -
Sci. 30: 417–423.
- Koçak, Z. F., H. Bulut, D. A. Koc, and H. M. Baskonus, 2016 Prototype
traveling wave solutions of new coupled Konno-Oono
equation. Optik (Stuttg). 127: 10786–10794.
- Konno, K. and H. Kakuhata, 1995 Interaction Among Growing,
Decaying and Stationary Solitons for Coupled Integrable Dispersionless
Equations. J. Phys. Soc. Japan 64: 2707–2709.
- Konno, K. and H. Kakuhata, 1996 Novel solitonic evolutions in a
coupled integrable, dispersionless system. J. Phys. Soc. Japan 65:
713–721.
- Konno, K. and H. Oono, 1994 New Coupled Integrable Dispersionless
Equations. J. Phys. Soc. Japan 63: 377–378.
- Kumar, R. and A. Kumar, 2022a Dynamical behavior of similarity
solutions of CKOEs with conservation law. Appl. Math. Comput.
422: 126976.
- Kumar, R. and A. Kumar, 2022b Some invariant solutions of coupled
Konno-Oono equations arising in electromagnetic and
quantum fields. Phys. Scr. 97: 075501.
- Kumar, R., K. Pandey, and A. Kumar, 2022 Dynamical Behavior of
the Solutions of Coupled Boussinesq–Burgers Equations Occurring
at the Seaside Beaches. Brazilian J. Phys. 52: 201.
- Kumar, R., R. Verma, and A. Tiwari, 2023 On similarity solutions
to (2+1)-dispersive long-wave equations. J. Ocean Eng. Sci. 8:
111–123.
- Manafian, J., I. Zamanpour, and A. Ranjbaran, 2018 On some new
analytical solutions for new coupled Konno–Oono equation by
the external trial equation method. J. Phys. Commun. 2: 015023.
- Mirhosseini-Alizamini, S. M., H. Rezazadeh, K. Srinivasa, and
A. Bekir, 2020 New closed form solutions of the new coupled
Konno–Oono equation using the new extended direct algebraic
method. Pramana 94: 52.
- Mohammed, W. W., N. Iqbal, A. Ali, and M. El-Morshedy, 2021
Exact solutions of the stochastic new coupled Konno-Oono equation.
Results Phys. 21: 103830.
- Olver, P., 1993 Applications of Lie groups to differential equations,
volume 107. Springer Science & Business Media.
- Özer, H. and S. Saliho˘ glu, 2007 Nonlinear Schrödinger equations
and N=1 superconformal algebra. Chaos, Solitons & Fractals 33:
1417–1423.
- Pan, B. T. L.W. Q. Q.-X.,W. and J. Yan, 2010 Conservation laws and
analytic soliton solutions for coupled integrable dispersionless
equations with symbolic computation. Commun. Theor. Phys.
54: 687–696.
- Souleymanou, A., V. K. Kuetche, T. B. Bouetou, and T. C. Kofane,
2012 Traveling Wave-Guide Channels of a New Coupled Integrable
Dispersionless System. Commun. Theor. Phys. 57: 10–14.
- Torvattanabun, M., P. Juntakud, A. Saiyun, and N. Khansai, 2018
The new exact solutions of the new coupled Konno-Oono equation
by using extended simplest equation method. Appl. Math.
Sci. 12: 293–301.
- Wang, K.-J. and J.-H. Liu, 2022 Study on abundant analytical solutions
of the new coupled Konno–Oono equation in the magnetic
field. Open Phys. 20: 390–401.
- Xu, G. et al., 2014 N-fold darboux transformation of the jaulentmiodek
equation. Applied Mathematics 5: 2657.
- Yel, G., H. M. Baskonus, and H. Bulut, 2017 Novel archetypes
of new coupled Konno–Oono equation by using sine–Gordon
expansion method. Opt. Quantum Electron. 49: 285.
- Zahran, E. and A. Bekir, 2023 New diverse soliton solutions for the
coupled konno-oono equations. Optical and Quantum Electronics
55: 1–12.
- Zhou, R., 1997 The finite-band solution of the Jaulent–Miodek
equation. J. Math. Phys. 38: 2535–2546.
Year 2023,
Volume: 5 Issue: 4, 281 - 285, 31.12.2023
Raj Kumar
Krıpa Shankar Pandey
Avneesh Kumar
Anshu Kumar
References
- Abdelrahman, M. and H. Alkhidhr, 2020 Fundamental solutions
for the new coupled Konno-Oono equation in magnetic field.
Results Phys. 19: 103445.
- Abdullah, F. A., M. T. Islam, J. F. Gómez-Aguilar, and M. A. Akbar,
2023 Impressive and innovative soliton shapes for nonlinear
Konno–Oono system relating to electromagnetic field. Opt.
Quantum Electron. 55: 69.
- Alam, M. N. and F. B. M. Belgacem, 2016 New generalized (G’/G)-
expansion method applications to coupled Konno-Oono equation.
Adv. Pure Math. 06: 168–179.
- Bashar, M. A., G. Mondal, K. Khan, and A. Bekir, 2016 Traveling
wave solutions of new coupled konno-oono equation. New
Trends in Mathematical Sciences 4: 296–303.
- Bluman, G. and J. Cole, 1974 Similarity Methods for Differential
Equations. Springer New York.
- Hirota, R. and S. Tsujimoto, 1994 Note on “new coupled integrable
dispersionless equations”. J. Phys. Soc. Japan 63: 3533–3533.
- Jaulent, M. and I. Miodek, 1976 Nonlinear evolution equations
associated with energy dependent schrödinger potentials. Lett.
Math. Phys. 1: 243–250.
- Kakuhata, H. and K. Konno, 1996 A Generalization of Coupled
Integrable, Dispersionless System. J. Phys. Soc. Japan 65: 340–
341.
- Karaca, Y., 2023 Computational complexity-based fractional-order
neural network models for the diagnostic treatments and predictive
transdifferentiability of heterogeneous cancer cell propensity.
Chaos Theory and Applications 5: 34–51.
- Karaca, Y. and D. Baleanu, 2022 Evolutionary mathematical science,
fractional modeling and artificial intelligence of nonlinear
dynamics in complex systems. Chaos Theory and Applications
4: 111–118.
- Khalique, M., 2012 Exact solutions and conservation laws of a
coupled integrable dispersionless system. Filomat 26: 957–964.
- Khan, K. and M. A. Akbar, 2013 TravelingWave Solutions of Some
Coupled Nonlinear Evolution Equations. ISRN Math. Phys. 2013:
1–8.
- Khater, M. M., A. R. Seadawy, and D. Lu, 2018 Dispersive solitary
wave solutions of new coupled Konno-Oono, Higgs field and
Maccari equations and their applications. J. King Saud Univ. -
Sci. 30: 417–423.
- Koçak, Z. F., H. Bulut, D. A. Koc, and H. M. Baskonus, 2016 Prototype
traveling wave solutions of new coupled Konno-Oono
equation. Optik (Stuttg). 127: 10786–10794.
- Konno, K. and H. Kakuhata, 1995 Interaction Among Growing,
Decaying and Stationary Solitons for Coupled Integrable Dispersionless
Equations. J. Phys. Soc. Japan 64: 2707–2709.
- Konno, K. and H. Kakuhata, 1996 Novel solitonic evolutions in a
coupled integrable, dispersionless system. J. Phys. Soc. Japan 65:
713–721.
- Konno, K. and H. Oono, 1994 New Coupled Integrable Dispersionless
Equations. J. Phys. Soc. Japan 63: 377–378.
- Kumar, R. and A. Kumar, 2022a Dynamical behavior of similarity
solutions of CKOEs with conservation law. Appl. Math. Comput.
422: 126976.
- Kumar, R. and A. Kumar, 2022b Some invariant solutions of coupled
Konno-Oono equations arising in electromagnetic and
quantum fields. Phys. Scr. 97: 075501.
- Kumar, R., K. Pandey, and A. Kumar, 2022 Dynamical Behavior of
the Solutions of Coupled Boussinesq–Burgers Equations Occurring
at the Seaside Beaches. Brazilian J. Phys. 52: 201.
- Kumar, R., R. Verma, and A. Tiwari, 2023 On similarity solutions
to (2+1)-dispersive long-wave equations. J. Ocean Eng. Sci. 8:
111–123.
- Manafian, J., I. Zamanpour, and A. Ranjbaran, 2018 On some new
analytical solutions for new coupled Konno–Oono equation by
the external trial equation method. J. Phys. Commun. 2: 015023.
- Mirhosseini-Alizamini, S. M., H. Rezazadeh, K. Srinivasa, and
A. Bekir, 2020 New closed form solutions of the new coupled
Konno–Oono equation using the new extended direct algebraic
method. Pramana 94: 52.
- Mohammed, W. W., N. Iqbal, A. Ali, and M. El-Morshedy, 2021
Exact solutions of the stochastic new coupled Konno-Oono equation.
Results Phys. 21: 103830.
- Olver, P., 1993 Applications of Lie groups to differential equations,
volume 107. Springer Science & Business Media.
- Özer, H. and S. Saliho˘ glu, 2007 Nonlinear Schrödinger equations
and N=1 superconformal algebra. Chaos, Solitons & Fractals 33:
1417–1423.
- Pan, B. T. L.W. Q. Q.-X.,W. and J. Yan, 2010 Conservation laws and
analytic soliton solutions for coupled integrable dispersionless
equations with symbolic computation. Commun. Theor. Phys.
54: 687–696.
- Souleymanou, A., V. K. Kuetche, T. B. Bouetou, and T. C. Kofane,
2012 Traveling Wave-Guide Channels of a New Coupled Integrable
Dispersionless System. Commun. Theor. Phys. 57: 10–14.
- Torvattanabun, M., P. Juntakud, A. Saiyun, and N. Khansai, 2018
The new exact solutions of the new coupled Konno-Oono equation
by using extended simplest equation method. Appl. Math.
Sci. 12: 293–301.
- Wang, K.-J. and J.-H. Liu, 2022 Study on abundant analytical solutions
of the new coupled Konno–Oono equation in the magnetic
field. Open Phys. 20: 390–401.
- Xu, G. et al., 2014 N-fold darboux transformation of the jaulentmiodek
equation. Applied Mathematics 5: 2657.
- Yel, G., H. M. Baskonus, and H. Bulut, 2017 Novel archetypes
of new coupled Konno–Oono equation by using sine–Gordon
expansion method. Opt. Quantum Electron. 49: 285.
- Zahran, E. and A. Bekir, 2023 New diverse soliton solutions for the
coupled konno-oono equations. Optical and Quantum Electronics
55: 1–12.
- Zhou, R., 1997 The finite-band solution of the Jaulent–Miodek
equation. J. Math. Phys. 38: 2535–2546.