During the nineties, the Rössler’s have reported in their famous book “Chaos in Physiology,” that “physiology is the mother of Chaos.” Moreover, several researchers have proved that Chaos is a generic characteristic of systems in physiology. In the context of disease, like for example growth of cancer cell populations, Chaos often refers to irregular and unpredictable patterns. In such cases, Chaos signatures can be used to prove the existence of some pathologies. However, for other physiological behaviors, Chaos is a form of order disguised as disorder and can be a signature of healthy physiological functions. This is for example the case of human brain behavior. As the boundary between health and disease is not always clear-cut in chaotic systems in physiology, some conditions may involve transitions between ordered and chaotic states. Understanding these transitions and identifying critical points can be crucial for predicting Healthy vs. pathological Chaos. Using recent advances in physiological Chaos and disease dynamics, this survey paper tries to answer the crucial question: when Chaos be a sign of health or disease?
Alvarez-Arenas, A., K. E. Starkov, G. F. Calvo, and J. Belmonte-
Beitia, 2019 Ultimate dynamics and optimal control of a multicompartment
model of tumor resistance to chemotherapy. Discrete
& Continuous Dynamical Systems-Series B 24.
Alves, L. G., P. B. Winter, L. N. Ferreira, R. M. Brielmann, R. I. Morimoto,
et al., 2017 Long-range correlations and fractal dynamics
in c. elegans: Changes with aging and stress. Physical Review E
96: 022417.
Ansarinasab, S., F. Parastesh, F. Ghassemi, K. Rajagopal, S. Jafari,
et al., 2023 Synchronization in functional brain networks of children
suffering from adhd based on hindmarsh-rose neuronal
model. Computers in Biology and Medicine 152: 106461.
Bayani, A., S. Jafari, J. Sprott, and B. Hatef, 2018 A chaotic model
of migraine headache considering the dynamical transitions of
this cyclic disease. Europhysics Letters 123: 10006.
Borah, M., D. Das, A. Gayan, F. Fenton, and E. Cherry, 2021 Control
and anticontrol of Chaos in fractional-order models of diabetes,
hiv, dengue, migraine, parkinson’s and ebola virus diseases.
Chaos, Solitons & Fractals 153: 111419.
Boubaker, O., 2020 Control theory in biomedical engineering: applications
in physiology and medical robotics. Academic Press.
Boubaker, O., 2023 Medical and Healthcare Robotics: New Paradigms
and Recent Advances. Elsevier.
Boudin, L., C. Grandmont, B. Grec, and S. Martin, 2023 A coupled
model for the dynamics of gas exchanges in the human lung
with haldane and bohr’s effects. Journal of Theoretical Biology
573: 111590.
Breakspear, M., 2017 Dynamic models of large-scale brain activity.
Nature neuroscience 20: 340–352.
Cashin, A. and J. Yorke, 2016 Overly regulated thinking and autism
revisited. Journal of Child and Adolescent Psychiatric Nursing
29: 148–153.
Chapelot, D. and K. Charlot, 2019 Physiology of energy homeostasis:
Models, actors, challenges and the glucoadipostatic loop.
Metabolism 92: 11–25.
Cheffer, A., M. A. Savi, T. L. Pereira, and A. S. de Paula, 2021
Heart rhythm analysis using a nonlinear dynamics perspective.
Applied Mathematical Modelling 96: 152–176.
Choquet, D., M. Sainlos, and J.-B. Sibarita, 2021 Advanced imaging
and labelling methods to decipher brain cell organization and
function. Nature Reviews Neuroscience 22: 237–255.
Coffey, D. S., 1998 Self-organization, complexity and Chaos: the
new biology for medicine. Nature medicine 4: 882–885.
Cross, S. S. and D. W. Cotton, 1994 Chaos and antichaos in pathology.
Human pathology 25: 630–637.
da Silva, F. L., 1991 Neural mechanisms underlying brain waves:
from neural membranes to networks. Electroencephalography
and clinical neurophysiology 79: 81–93.
Debbouche, N., A. Ouannas, G. Grassi, A.-B. A. Al-Hussein, F. R.
Tahir, et al., 2022 Chaos in cancer tumor growth model with commensurate
and incommensurate fractional-order derivatives.
Computational and Mathematical Methods in Medicine 2022.
Devaney, R., 2018 An introduction to chaotic dynamical systems. CRC
press.
Dritsas, E. and M. Trigka, 2023 Efficient data-driven machine learning
models for cardiovascular diseases risk prediction. Sensors
23: 1161.
Duarte, J., C. Januário, N. Martins, C. C. Ramos, C. Rodrigues,
et al., 2018 Optimal homotopy analysis of a chaotic hiv-1 model
incorporating aids-related cancer cells. Numerical Algorithms
77: 261–288.
Dutta, S., T. Kushner, and S. Sankaranarayanan, 2018 Robust datadriven
control of artificial pancreas systems using neural networks.
In Computational Methods in Systems Biology: 16th International
Conference, CMSB 2018, Brno, Czech Republic, September
12-14, 2018, Proceedings 16, pp. 183–202, Springer.
Elbert, T., W. J. Ray, Z. J. Kowalik, J. E. Skinner, K. E. Graf, et al.,
1994 Chaos and physiology: deterministic Chaos in excitable cell
assemblies. Physiological reviews 74: 1–47.
Enderle, J. and J. Bronzino, 2012 Introduction to biomedical engineering.
Academic press.
Fang, X. and L. Wang, 2021 Memristive hodgkin-huxley spiking
neuron model for reproducing neuron behaviors. Frontiers in
Neuroscience 15: 730566.
Faust, O. and M. G. Bairy, 2012 Nonlinear analysis of physiological
signals: a review. Journal of Mechanics in Medicine and Biology
12: 1240015.
Fernández-Carreón, B., J. Munoz-Pacheco, E. Zambrano-Serrano,
and O. Félix-Beltrán, 2022 Analysis of a fractional-order glucoseinsulin
biological system with time delay. Chaos Theory and
Applications 4: 10–18.
Flower, A., G. Kalamangalam, and G. Kember, 1993 A mathematical
analysis of the grodins model of respiratory control.
Mathematical Medicine and Biology: A Journal of the IMA 10:
249–280.
Fong, L. E., A. R. Muñoz-Rojas, and K. Miller-Jensen, 2018 Advancing
systems immunology through data-driven statistical
analysis. Current opinion in biotechnology 52: 109–115.
Formaggia, L., A. Quarteroni, and A. Veneziani, 2010 Cardiovascular
Mathematics: Modeling and simulation of the circulatory system,
volume 1. Springer Science & Business Media.
Garfinkel, A., P.-S. Chen, D. O.Walter, H. S. Karagueuzian, B. Kogan,
et al., 1997 Quasiperiodicity and Chaos in cardiac fibrillation.
The Journal of clinical investigation 99: 305–314.
Garland, J., 2013 Energy management–a critical role in cancer
induction? Critical reviews in oncology/hematology 88: 198–
217.
Giakoumi, M., P. S. Stephanou, K. Kapnisis, and A. Anayiotos,
2023 On the development of physiologically based toxicokinetic
(pbtk) models for cardiovascular implants. Regulatory Toxicology
and Pharmacology 144: 105489.
Ginoux, J.-M., H. Ruskeepää, M. Perc, R. Naeck, V. Di Costanzo,
et al., 2018 Is type 1 diabetes a chaotic phenomenon? Chaos,
Solitons & Fractals 111: 198–205.
Glass, L., A. Beuter, and D. Larocque, 1988 Time delays, oscillations,
and Chaos in physiological control systems. Mathematical
Biosciences 90: 111–125.
Gois, S. R. and M. A. Savi, 2009 An analysis of heart rhythm dynamics
using a three-coupled oscillator model. Chaos, Solitons
& Fractals 41: 2553–2565.
Golbin, A. and A. Umantsev, 2006 Adaptive Chaos: mild disorder
may help contain major disease. Medical hypotheses 66: 182–
187.
Goldberger, A. L., L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K.
Peng, et al., 2002 Fractal dynamics in physiology: alterations
with disease and aging. Proceedings of the national academy of
sciences 99: 2466–2472.
Goldberger, A. L., D. R. Rigney, and B. J. West, 1990 Chaos and
fractals in human physiology. Scientific American 262: 42–49.
Goldberger, A. L. and B. J. West, 1987 Chaos in physiology: health
or disease? In Chaos in biological systems, pp. 1–4, Springer.
Grodins, F. S., 1959 Integrative cardiovascular physiology: a mathematical
synthesis of cardiac and blood vessel hemodynamics.
The Quarterly Review of Biology 34: 93–116.
Gupta, V., 2023 Application of Chaos theory for arrhythmia detection
in pathological databases. International Journal of Medical
Engineering and Informatics 15: 191–202.
Gupta, V., M. Mittal, and V. Mittal, 2020 Chaos theory: an emerging
tool for arrhythmia detection. Sensing and Imaging 21: 10.
Gupta, V., M. Mittal, and V. Mittal, 2021 Chaos theory and artfa:
emerging tools for interpreting ecg signals to diagnose cardiac arrhythmias.
Wireless Personal Communications 118: 3615–3646.
Heltberg, M. L., S. Krishna, and M. H. Jensen, 2019 On chaotic
dynamics in transcription factors and the associated effects in
differential gene regulation. Nature communications 10: 71.
Hodgkin, A. L. and A. F. Huxley, 1952 A quantitative description
of membrane current and its application to conduction and
excitation in nerve. The Journal of physiology 117: 500.
Houk, J. C., 1988 Control strategies in physiological systems. The
FASEB journal 2: 97–107.
Ismail, L. S., S. A. Zulkifl, and N. H. Hamid, 2018 Circuit modeling
and analysis of cardiovascular system using analog circuit analogy.
In 2018 International Conference on Intelligent and Advanced
System (ICIAS), pp. 1–6, IEEE.
Itik, M. and S. P. Banks, 2010 Chaos in a three-dimensional cancer
model. International Journal of Bifurcation and Chaos 20: 71–79.
Karaca, Y., 2023 Computational complexity-based fractional-order
neural network models for the diagnostic treatments and predictive
transdifferentiability of heterogeneous cancer cell propensity.
Chaos Theory and Applications 5: 34–51.
Kavakci, M., 2021 Neurochaos: Analyzing the brain and its disorders
from a physics perspective. In Chaos, Complexity and Leadership
2020: Application of Nonlinear Dynamics from Interdisciplinary
Perspective, pp. 15–24, Springer.
Kernick, D., 2005 Migraine—new perspectives from chaos theory.
Cephalalgia 25: 561–566.
Khan, A. F., Q. Adewale, T. R. Baumeister, F. Carbonell, K. Zilles,
et al., 2022 Personalized brain models identify neurotransmitter
receptor changes in alzheimer’s disease. Brain 145: 1785–1804.
Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental
evidence and related models. Comptes rendus biologies
326: 787–840.
Korolj, A., H.-T. Wu, and M. Radisic, 2019 A healthy dose of chaos:
Using fractal frameworks for engineering higher-fidelity biomedical
systems. Biomaterials 219: 119363.
Lassoued, A. and O. Boubaker, 2016 On new chaotic and hyperchaotic
systems: a literature survey. Nonlinear Analysis: Modelling
and Control 21: 770–789.
Lassoued, A. and O. Boubaker, 2020 Modeling and control in
physiology. In Control Theory in Biomedical Engineering, pp. 3–42,
Elsevier.
Leaning, M., H. Pullen, E. Carson, and L. Finkelstein, 1983 Modelling
a complex biological system: the human cardiovascular
system—1. methodology and model description. Transactions
of the Institute of Measurement and Control 5: 71–86.
Lipsitz, L. A. and A. L. Goldberger, 1992 Loss of’complexity’and
aging: potential applications of fractals and chaos theory to
senescence. Jama 267: 1806–1809.
Liu, Y., C. Chen, X. Tian, E. Zuo, Z. Cheng, et al., 2024 A prospective
study: Advances in chaotic characteristics of serum raman
spectroscopy in the field of assisted diagnosis of disease. Expert
Systems with Applications 238: 121787.
Lozi, R., 2023 Are chaotic attractors just a mathematical curiosity
or do they contribute to the advancement of science? Chaos
Theory and Applications 5: 133–140.
Mackey, M. C. and U. An Der Heiden, 1984 The dynamics of
recurrent inhibition. Journal of Mathematical Biology 19: 211–
225.
Mansier, P., J. Clairambault, N. Charlotte, C. Médigue, C. Vermeiren,
et al., 1996 Linear and non-linear analyses of heart rate
variability: a minireview. Cardiovascular research 31: 371–379.
Mansour, M., T. B. Donmez, M. Ç. Kutlu, and C. Freeman, 2023
Respiratory diseases prediction from a novel chaotic system.
Chaos Theory and Applications 5: 20–26.
Mari, A., A. Tura, and E. Grespan, 2020 Mathematical modeling
for the physiological and clinical investigation of glucose homeostasis
and diabetes. Frontiers in Physiology 11: 575789.
McKnight, L. L., S. Lopez, A. K. Shoveller, and J. France, 2013 Models
for the study of whole-body glucose kinetics: a mathematical
synthesis. International Scholarly Research Notices 2013.
Mohammadi, S. and S. R. Hejazi, 2023 Lie symmetry, Chaos optimal
control in non-linear fractional-order diabetes mellitus,
human immunodeficiency virus, migraine parkinson’s diseases
models: using evolutionary algorithms. Computer Methods in
Biomechanics and Biomedical Engineering pp. 1–29.
Mpitsos, G. J., R. M. Burton Jr, and H. C. Creech, 1988 Connectionist
networks learn to transmit Chaos. Brain Research Bulletin 21:
539–546.
Müller, W., A. Jung, and H. Ahammer, 2017 Advantages and problems
of nonlinear methods applied to analyze physiological time
signals: human balance control as an example. Scientific reports
7: 2464.
Muni, S. S., Z. Njitacke, C. Feudjio, T. Fozin, and J. Awrejcewicz,
2022 Route to chaos and chimera states in a network of memristive
hindmarsh-rose neurons model with external excitation.
Chaos Theory and Applications 4: 119–127.
Munoz-Pacheco, J. M., C. Posadas-Castillo, and E. Zambrano-
Serrano, 2020 The effect of a non-local fractional operator in
an asymmetrical glucose-insulin regulatory system: Analysis,
synchronization and electronic implementation. Symmetry 12:
1395.
Naik, P. A., K. M. Owolabi, M. Yavuz, and J. Zu, 2020 Chaotic dynamics
of a fractional order hiv-1 model involving aids-related
cancer cells. Chaos, Solitons & Fractals 140: 110272.
Noble, D., A. Garny, and P. J. Noble, 2012 How the hodgkin–huxley
equations inspired the cardiac physiome project. The Journal of
physiology 590: 2613–2628.
Panahi, S., Z. Aram, S. Jafari, J. Ma, and J. Sprott, 2017 Modeling
of epilepsy based on chaotic artificial neural network. Chaos,
Solitons & Fractals 105: 150–156.
Panahi, S., T. Shirzadian, M. Jalili, and S. Jafari, 2019 A new chaotic
network model for epilepsy. Applied Mathematics and Computation
346: 395–407.
Paoletti, N., K. S. Liu, H. Chen, S. A. Smolka, and S. Lin, 2019 Data-driven robust control for a closed-loop artificial pancreas.
IEEE/ACM transactions on computational biology and bioinformatics
17: 1981–1993.
Peng, C.-K., S. V. Buldyrev, J. M. Hausdorff, S. Havlin, J. E. Mietus,
et al., 1994 Non-equilibrium dynamics as an indispensable
characteristic of a healthy biological system. Integrative Physiological
and Behavioral Science 29: 283–293.
Pereda, E., R. Q. Quiroga, and J. Bhattacharya, 2005 Nonlinear
multivariate analysis of neurophysiological signals. Progress in
neurobiology 77: 1–37.
Persson, P. B., 1996 Modulation of cardiovascular control mechanisms
and their interaction. Physiological reviews 76: 193–244.
Pincus, S. M., 1991 Approximate entropy as a measure of system
complexity. Proceedings of the national academy of sciences 88:
2297–2301.
Pincus, S. M. and A. L. Goldberger, 1994 Physiological time-series
analysis: what does regularity quantify? American Journal
of Physiology-Heart and Circulatory Physiology 266: H1643–
H1656.
Poon, C.-S. and C. K. Merrill, 1997 Decrease of cardiac Chaos in
congestive heart failure. Nature 389: 492–495.
Pritchard, W. S. and D. W. Duke, 1995 Measuring Chaos in the
brain-a tutorial review of eeg dimension estimation. Brain and
cognition 27: 353–397.
Rajagopal, K., A. Bayani, S. Jafari, A. Karthikeyan, and I. Hussain,
2020 Chaotic dynamics of a fractional order glucose-insulin regulatory
system. Frontiers of Information Technology & Electronic
Engineering 21: 1108–1118.
Rajeswari, S. and P. Vijayakumar, 2023 Mathematical approaches
in the study of diabetes mellitus. In Computer Vision and Robotics:
Proceedings of CVR 2022, pp. 229–248, Springer.
Rasool, N. and J. I. Bhat, 2023 Unveiling the complexity of medical
imaging through deep learning approaches. Chaos Theory and
Applications 5: 267–280.
Rossler, O. E. and R. Rossler, 1994 Chaos in physiology. Integrative
Physiological and Behavioral Science 29: 328–333.
Russo, G., A. Tramontano, I. Iodice, L. Chiariotti, and A. Pezone,
2021 Epigenome Chaos: stochastic and deterministic dna methylation
events drive cancer evolution. Cancers 13: 1800.
Sarbadhikari, S. N. and K. Chakrabarty, 2001 Chaos in the brain:
a short review alluding to epilepsy, depression, exercise and
lateralization. Medical engineering & physics 23: 447–457.
Sedivy, R. and R. M. Mader, 1997 Fractals, Chaos, and cancer: do
they coincide? Cancer investigation 15: 601–607.
Shabestari, P. S., Z. Rostami, V.-T. Pham, F. E. Alsaadi, and T. Hayat,
2019 Modeling of neurodegenerative diseases using discrete
chaotic systems. Communications in Theoretical Physics 71:
1241.
Shi, Y., P. Lawford, and R. Hose, 2011 Review of zero-d and 1-d
models of blood flow in the cardiovascular system. Biomedical
engineering online 10: 1–38.
Shirmohammadi, S., K. Barbe, D. Grimaldi, S. Rapuano, and
S. Grassini, 2016 Instrumentation and measurement in medical,
biomedical, and healthcare systems. IEEE Instrumentation
& Measurement Magazine 19: 6–12.
Sprott, J. C., 2003 Chaos and time-series analysis. Oxford university
press.
Stam, C. J., 2005 Nonlinear dynamical analysis of eeg and meg:
review of an emerging field. Clinical neurophysiology 116: 2266–
2301.
Tsatsaris, A., S. Domenikos, C. Psychos, and D. Moutsiounas, 2016
Chaos theory and behavioural patterns: a theoretical approach
to psychosis, bipolar disorders and depression. Journal of Advanced
Biotechnology and Bioengineering 4.
Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics.
Current opinion in neurobiology 31: 67–71.
Uthamacumaran, A., 2020 Cancer: A turbulence problem. Neoplasia
22: 759–769.
Uthamacumaran, A., 2021 A review of dynamical systems approaches
for the detection of chaotic attractors in cancer networks.
Patterns 2.
Wagner, C., B. Nafz, and P. Persson, 1996 Chaos in blood pressure
control. Cardiovascular research 31: 380–387.
Xuan, L., S. Ahmad, A. Ullah, S. Saifullah, A. Akgül, et al., 2022
Bifurcations, stability analysis and complex dynamics of caputo
fractal-fractional cancer model. Chaos, Solitons & Fractals 159:
112113.
Yadav, S. S. and S. M. Jadhav, 2021 Detection of common risk factors
for diagnosis of cardiac arrhythmia using machine learning
algorithm. Expert systems with applications 163: 113807.
Ye, H., Y. Ding, et al., 2009 Nonlinear dynamics and Chaos in a
fractional-order hiv model. Mathematical Problems in Engineering
2009.
Yoo, J., Z. Sun, M. Greenacre, Q. Ma, D. Chung, et al., 2022 A
guideline for the statistical analysis of compositional data in
immunology. arXiv preprint arXiv:2201.07945 .
Yousefnezhad, M., C.-Y. Kao, and S. A. Mohammadi, 2021 Optimal
chemotherapy for brain tumor growth in a reaction-diffusion
model. SIAM Journal on Applied Mathematics 81: 1077–1097.
Yulmetyev, R. M., S. A. Demin, and P. Hänggi, 2006 Manifestation
of Chaos in real complex systems: Case of parkinson’s disease. In The logistic map and the route to Chaos: From the beginnings to
modern applications, pp. 175–196, Springer.
Zhang, X., Z. Wu, and L. Chua, 2020 Hearts are poised near the
edge of Chaos. International Journal of Bifurcation and Chaos 30:
2030023.
Alvarez-Arenas, A., K. E. Starkov, G. F. Calvo, and J. Belmonte-
Beitia, 2019 Ultimate dynamics and optimal control of a multicompartment
model of tumor resistance to chemotherapy. Discrete
& Continuous Dynamical Systems-Series B 24.
Alves, L. G., P. B. Winter, L. N. Ferreira, R. M. Brielmann, R. I. Morimoto,
et al., 2017 Long-range correlations and fractal dynamics
in c. elegans: Changes with aging and stress. Physical Review E
96: 022417.
Ansarinasab, S., F. Parastesh, F. Ghassemi, K. Rajagopal, S. Jafari,
et al., 2023 Synchronization in functional brain networks of children
suffering from adhd based on hindmarsh-rose neuronal
model. Computers in Biology and Medicine 152: 106461.
Bayani, A., S. Jafari, J. Sprott, and B. Hatef, 2018 A chaotic model
of migraine headache considering the dynamical transitions of
this cyclic disease. Europhysics Letters 123: 10006.
Borah, M., D. Das, A. Gayan, F. Fenton, and E. Cherry, 2021 Control
and anticontrol of Chaos in fractional-order models of diabetes,
hiv, dengue, migraine, parkinson’s and ebola virus diseases.
Chaos, Solitons & Fractals 153: 111419.
Boubaker, O., 2020 Control theory in biomedical engineering: applications
in physiology and medical robotics. Academic Press.
Boubaker, O., 2023 Medical and Healthcare Robotics: New Paradigms
and Recent Advances. Elsevier.
Boudin, L., C. Grandmont, B. Grec, and S. Martin, 2023 A coupled
model for the dynamics of gas exchanges in the human lung
with haldane and bohr’s effects. Journal of Theoretical Biology
573: 111590.
Breakspear, M., 2017 Dynamic models of large-scale brain activity.
Nature neuroscience 20: 340–352.
Cashin, A. and J. Yorke, 2016 Overly regulated thinking and autism
revisited. Journal of Child and Adolescent Psychiatric Nursing
29: 148–153.
Chapelot, D. and K. Charlot, 2019 Physiology of energy homeostasis:
Models, actors, challenges and the glucoadipostatic loop.
Metabolism 92: 11–25.
Cheffer, A., M. A. Savi, T. L. Pereira, and A. S. de Paula, 2021
Heart rhythm analysis using a nonlinear dynamics perspective.
Applied Mathematical Modelling 96: 152–176.
Choquet, D., M. Sainlos, and J.-B. Sibarita, 2021 Advanced imaging
and labelling methods to decipher brain cell organization and
function. Nature Reviews Neuroscience 22: 237–255.
Coffey, D. S., 1998 Self-organization, complexity and Chaos: the
new biology for medicine. Nature medicine 4: 882–885.
Cross, S. S. and D. W. Cotton, 1994 Chaos and antichaos in pathology.
Human pathology 25: 630–637.
da Silva, F. L., 1991 Neural mechanisms underlying brain waves:
from neural membranes to networks. Electroencephalography
and clinical neurophysiology 79: 81–93.
Debbouche, N., A. Ouannas, G. Grassi, A.-B. A. Al-Hussein, F. R.
Tahir, et al., 2022 Chaos in cancer tumor growth model with commensurate
and incommensurate fractional-order derivatives.
Computational and Mathematical Methods in Medicine 2022.
Devaney, R., 2018 An introduction to chaotic dynamical systems. CRC
press.
Dritsas, E. and M. Trigka, 2023 Efficient data-driven machine learning
models for cardiovascular diseases risk prediction. Sensors
23: 1161.
Duarte, J., C. Januário, N. Martins, C. C. Ramos, C. Rodrigues,
et al., 2018 Optimal homotopy analysis of a chaotic hiv-1 model
incorporating aids-related cancer cells. Numerical Algorithms
77: 261–288.
Dutta, S., T. Kushner, and S. Sankaranarayanan, 2018 Robust datadriven
control of artificial pancreas systems using neural networks.
In Computational Methods in Systems Biology: 16th International
Conference, CMSB 2018, Brno, Czech Republic, September
12-14, 2018, Proceedings 16, pp. 183–202, Springer.
Elbert, T., W. J. Ray, Z. J. Kowalik, J. E. Skinner, K. E. Graf, et al.,
1994 Chaos and physiology: deterministic Chaos in excitable cell
assemblies. Physiological reviews 74: 1–47.
Enderle, J. and J. Bronzino, 2012 Introduction to biomedical engineering.
Academic press.
Fang, X. and L. Wang, 2021 Memristive hodgkin-huxley spiking
neuron model for reproducing neuron behaviors. Frontiers in
Neuroscience 15: 730566.
Faust, O. and M. G. Bairy, 2012 Nonlinear analysis of physiological
signals: a review. Journal of Mechanics in Medicine and Biology
12: 1240015.
Fernández-Carreón, B., J. Munoz-Pacheco, E. Zambrano-Serrano,
and O. Félix-Beltrán, 2022 Analysis of a fractional-order glucoseinsulin
biological system with time delay. Chaos Theory and
Applications 4: 10–18.
Flower, A., G. Kalamangalam, and G. Kember, 1993 A mathematical
analysis of the grodins model of respiratory control.
Mathematical Medicine and Biology: A Journal of the IMA 10:
249–280.
Fong, L. E., A. R. Muñoz-Rojas, and K. Miller-Jensen, 2018 Advancing
systems immunology through data-driven statistical
analysis. Current opinion in biotechnology 52: 109–115.
Formaggia, L., A. Quarteroni, and A. Veneziani, 2010 Cardiovascular
Mathematics: Modeling and simulation of the circulatory system,
volume 1. Springer Science & Business Media.
Garfinkel, A., P.-S. Chen, D. O.Walter, H. S. Karagueuzian, B. Kogan,
et al., 1997 Quasiperiodicity and Chaos in cardiac fibrillation.
The Journal of clinical investigation 99: 305–314.
Garland, J., 2013 Energy management–a critical role in cancer
induction? Critical reviews in oncology/hematology 88: 198–
217.
Giakoumi, M., P. S. Stephanou, K. Kapnisis, and A. Anayiotos,
2023 On the development of physiologically based toxicokinetic
(pbtk) models for cardiovascular implants. Regulatory Toxicology
and Pharmacology 144: 105489.
Ginoux, J.-M., H. Ruskeepää, M. Perc, R. Naeck, V. Di Costanzo,
et al., 2018 Is type 1 diabetes a chaotic phenomenon? Chaos,
Solitons & Fractals 111: 198–205.
Glass, L., A. Beuter, and D. Larocque, 1988 Time delays, oscillations,
and Chaos in physiological control systems. Mathematical
Biosciences 90: 111–125.
Gois, S. R. and M. A. Savi, 2009 An analysis of heart rhythm dynamics
using a three-coupled oscillator model. Chaos, Solitons
& Fractals 41: 2553–2565.
Golbin, A. and A. Umantsev, 2006 Adaptive Chaos: mild disorder
may help contain major disease. Medical hypotheses 66: 182–
187.
Goldberger, A. L., L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K.
Peng, et al., 2002 Fractal dynamics in physiology: alterations
with disease and aging. Proceedings of the national academy of
sciences 99: 2466–2472.
Goldberger, A. L., D. R. Rigney, and B. J. West, 1990 Chaos and
fractals in human physiology. Scientific American 262: 42–49.
Goldberger, A. L. and B. J. West, 1987 Chaos in physiology: health
or disease? In Chaos in biological systems, pp. 1–4, Springer.
Grodins, F. S., 1959 Integrative cardiovascular physiology: a mathematical
synthesis of cardiac and blood vessel hemodynamics.
The Quarterly Review of Biology 34: 93–116.
Gupta, V., 2023 Application of Chaos theory for arrhythmia detection
in pathological databases. International Journal of Medical
Engineering and Informatics 15: 191–202.
Gupta, V., M. Mittal, and V. Mittal, 2020 Chaos theory: an emerging
tool for arrhythmia detection. Sensing and Imaging 21: 10.
Gupta, V., M. Mittal, and V. Mittal, 2021 Chaos theory and artfa:
emerging tools for interpreting ecg signals to diagnose cardiac arrhythmias.
Wireless Personal Communications 118: 3615–3646.
Heltberg, M. L., S. Krishna, and M. H. Jensen, 2019 On chaotic
dynamics in transcription factors and the associated effects in
differential gene regulation. Nature communications 10: 71.
Hodgkin, A. L. and A. F. Huxley, 1952 A quantitative description
of membrane current and its application to conduction and
excitation in nerve. The Journal of physiology 117: 500.
Houk, J. C., 1988 Control strategies in physiological systems. The
FASEB journal 2: 97–107.
Ismail, L. S., S. A. Zulkifl, and N. H. Hamid, 2018 Circuit modeling
and analysis of cardiovascular system using analog circuit analogy.
In 2018 International Conference on Intelligent and Advanced
System (ICIAS), pp. 1–6, IEEE.
Itik, M. and S. P. Banks, 2010 Chaos in a three-dimensional cancer
model. International Journal of Bifurcation and Chaos 20: 71–79.
Karaca, Y., 2023 Computational complexity-based fractional-order
neural network models for the diagnostic treatments and predictive
transdifferentiability of heterogeneous cancer cell propensity.
Chaos Theory and Applications 5: 34–51.
Kavakci, M., 2021 Neurochaos: Analyzing the brain and its disorders
from a physics perspective. In Chaos, Complexity and Leadership
2020: Application of Nonlinear Dynamics from Interdisciplinary
Perspective, pp. 15–24, Springer.
Kernick, D., 2005 Migraine—new perspectives from chaos theory.
Cephalalgia 25: 561–566.
Khan, A. F., Q. Adewale, T. R. Baumeister, F. Carbonell, K. Zilles,
et al., 2022 Personalized brain models identify neurotransmitter
receptor changes in alzheimer’s disease. Brain 145: 1785–1804.
Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental
evidence and related models. Comptes rendus biologies
326: 787–840.
Korolj, A., H.-T. Wu, and M. Radisic, 2019 A healthy dose of chaos:
Using fractal frameworks for engineering higher-fidelity biomedical
systems. Biomaterials 219: 119363.
Lassoued, A. and O. Boubaker, 2016 On new chaotic and hyperchaotic
systems: a literature survey. Nonlinear Analysis: Modelling
and Control 21: 770–789.
Lassoued, A. and O. Boubaker, 2020 Modeling and control in
physiology. In Control Theory in Biomedical Engineering, pp. 3–42,
Elsevier.
Leaning, M., H. Pullen, E. Carson, and L. Finkelstein, 1983 Modelling
a complex biological system: the human cardiovascular
system—1. methodology and model description. Transactions
of the Institute of Measurement and Control 5: 71–86.
Lipsitz, L. A. and A. L. Goldberger, 1992 Loss of’complexity’and
aging: potential applications of fractals and chaos theory to
senescence. Jama 267: 1806–1809.
Liu, Y., C. Chen, X. Tian, E. Zuo, Z. Cheng, et al., 2024 A prospective
study: Advances in chaotic characteristics of serum raman
spectroscopy in the field of assisted diagnosis of disease. Expert
Systems with Applications 238: 121787.
Lozi, R., 2023 Are chaotic attractors just a mathematical curiosity
or do they contribute to the advancement of science? Chaos
Theory and Applications 5: 133–140.
Mackey, M. C. and U. An Der Heiden, 1984 The dynamics of
recurrent inhibition. Journal of Mathematical Biology 19: 211–
225.
Mansier, P., J. Clairambault, N. Charlotte, C. Médigue, C. Vermeiren,
et al., 1996 Linear and non-linear analyses of heart rate
variability: a minireview. Cardiovascular research 31: 371–379.
Mansour, M., T. B. Donmez, M. Ç. Kutlu, and C. Freeman, 2023
Respiratory diseases prediction from a novel chaotic system.
Chaos Theory and Applications 5: 20–26.
Mari, A., A. Tura, and E. Grespan, 2020 Mathematical modeling
for the physiological and clinical investigation of glucose homeostasis
and diabetes. Frontiers in Physiology 11: 575789.
McKnight, L. L., S. Lopez, A. K. Shoveller, and J. France, 2013 Models
for the study of whole-body glucose kinetics: a mathematical
synthesis. International Scholarly Research Notices 2013.
Mohammadi, S. and S. R. Hejazi, 2023 Lie symmetry, Chaos optimal
control in non-linear fractional-order diabetes mellitus,
human immunodeficiency virus, migraine parkinson’s diseases
models: using evolutionary algorithms. Computer Methods in
Biomechanics and Biomedical Engineering pp. 1–29.
Mpitsos, G. J., R. M. Burton Jr, and H. C. Creech, 1988 Connectionist
networks learn to transmit Chaos. Brain Research Bulletin 21:
539–546.
Müller, W., A. Jung, and H. Ahammer, 2017 Advantages and problems
of nonlinear methods applied to analyze physiological time
signals: human balance control as an example. Scientific reports
7: 2464.
Muni, S. S., Z. Njitacke, C. Feudjio, T. Fozin, and J. Awrejcewicz,
2022 Route to chaos and chimera states in a network of memristive
hindmarsh-rose neurons model with external excitation.
Chaos Theory and Applications 4: 119–127.
Munoz-Pacheco, J. M., C. Posadas-Castillo, and E. Zambrano-
Serrano, 2020 The effect of a non-local fractional operator in
an asymmetrical glucose-insulin regulatory system: Analysis,
synchronization and electronic implementation. Symmetry 12:
1395.
Naik, P. A., K. M. Owolabi, M. Yavuz, and J. Zu, 2020 Chaotic dynamics
of a fractional order hiv-1 model involving aids-related
cancer cells. Chaos, Solitons & Fractals 140: 110272.
Noble, D., A. Garny, and P. J. Noble, 2012 How the hodgkin–huxley
equations inspired the cardiac physiome project. The Journal of
physiology 590: 2613–2628.
Panahi, S., Z. Aram, S. Jafari, J. Ma, and J. Sprott, 2017 Modeling
of epilepsy based on chaotic artificial neural network. Chaos,
Solitons & Fractals 105: 150–156.
Panahi, S., T. Shirzadian, M. Jalili, and S. Jafari, 2019 A new chaotic
network model for epilepsy. Applied Mathematics and Computation
346: 395–407.
Paoletti, N., K. S. Liu, H. Chen, S. A. Smolka, and S. Lin, 2019 Data-driven robust control for a closed-loop artificial pancreas.
IEEE/ACM transactions on computational biology and bioinformatics
17: 1981–1993.
Peng, C.-K., S. V. Buldyrev, J. M. Hausdorff, S. Havlin, J. E. Mietus,
et al., 1994 Non-equilibrium dynamics as an indispensable
characteristic of a healthy biological system. Integrative Physiological
and Behavioral Science 29: 283–293.
Pereda, E., R. Q. Quiroga, and J. Bhattacharya, 2005 Nonlinear
multivariate analysis of neurophysiological signals. Progress in
neurobiology 77: 1–37.
Persson, P. B., 1996 Modulation of cardiovascular control mechanisms
and their interaction. Physiological reviews 76: 193–244.
Pincus, S. M., 1991 Approximate entropy as a measure of system
complexity. Proceedings of the national academy of sciences 88:
2297–2301.
Pincus, S. M. and A. L. Goldberger, 1994 Physiological time-series
analysis: what does regularity quantify? American Journal
of Physiology-Heart and Circulatory Physiology 266: H1643–
H1656.
Poon, C.-S. and C. K. Merrill, 1997 Decrease of cardiac Chaos in
congestive heart failure. Nature 389: 492–495.
Pritchard, W. S. and D. W. Duke, 1995 Measuring Chaos in the
brain-a tutorial review of eeg dimension estimation. Brain and
cognition 27: 353–397.
Rajagopal, K., A. Bayani, S. Jafari, A. Karthikeyan, and I. Hussain,
2020 Chaotic dynamics of a fractional order glucose-insulin regulatory
system. Frontiers of Information Technology & Electronic
Engineering 21: 1108–1118.
Rajeswari, S. and P. Vijayakumar, 2023 Mathematical approaches
in the study of diabetes mellitus. In Computer Vision and Robotics:
Proceedings of CVR 2022, pp. 229–248, Springer.
Rasool, N. and J. I. Bhat, 2023 Unveiling the complexity of medical
imaging through deep learning approaches. Chaos Theory and
Applications 5: 267–280.
Rossler, O. E. and R. Rossler, 1994 Chaos in physiology. Integrative
Physiological and Behavioral Science 29: 328–333.
Russo, G., A. Tramontano, I. Iodice, L. Chiariotti, and A. Pezone,
2021 Epigenome Chaos: stochastic and deterministic dna methylation
events drive cancer evolution. Cancers 13: 1800.
Sarbadhikari, S. N. and K. Chakrabarty, 2001 Chaos in the brain:
a short review alluding to epilepsy, depression, exercise and
lateralization. Medical engineering & physics 23: 447–457.
Sedivy, R. and R. M. Mader, 1997 Fractals, Chaos, and cancer: do
they coincide? Cancer investigation 15: 601–607.
Shabestari, P. S., Z. Rostami, V.-T. Pham, F. E. Alsaadi, and T. Hayat,
2019 Modeling of neurodegenerative diseases using discrete
chaotic systems. Communications in Theoretical Physics 71:
1241.
Shi, Y., P. Lawford, and R. Hose, 2011 Review of zero-d and 1-d
models of blood flow in the cardiovascular system. Biomedical
engineering online 10: 1–38.
Shirmohammadi, S., K. Barbe, D. Grimaldi, S. Rapuano, and
S. Grassini, 2016 Instrumentation and measurement in medical,
biomedical, and healthcare systems. IEEE Instrumentation
& Measurement Magazine 19: 6–12.
Sprott, J. C., 2003 Chaos and time-series analysis. Oxford university
press.
Stam, C. J., 2005 Nonlinear dynamical analysis of eeg and meg:
review of an emerging field. Clinical neurophysiology 116: 2266–
2301.
Tsatsaris, A., S. Domenikos, C. Psychos, and D. Moutsiounas, 2016
Chaos theory and behavioural patterns: a theoretical approach
to psychosis, bipolar disorders and depression. Journal of Advanced
Biotechnology and Bioengineering 4.
Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics.
Current opinion in neurobiology 31: 67–71.
Uthamacumaran, A., 2020 Cancer: A turbulence problem. Neoplasia
22: 759–769.
Uthamacumaran, A., 2021 A review of dynamical systems approaches
for the detection of chaotic attractors in cancer networks.
Patterns 2.
Wagner, C., B. Nafz, and P. Persson, 1996 Chaos in blood pressure
control. Cardiovascular research 31: 380–387.
Xuan, L., S. Ahmad, A. Ullah, S. Saifullah, A. Akgül, et al., 2022
Bifurcations, stability analysis and complex dynamics of caputo
fractal-fractional cancer model. Chaos, Solitons & Fractals 159:
112113.
Yadav, S. S. and S. M. Jadhav, 2021 Detection of common risk factors
for diagnosis of cardiac arrhythmia using machine learning
algorithm. Expert systems with applications 163: 113807.
Ye, H., Y. Ding, et al., 2009 Nonlinear dynamics and Chaos in a
fractional-order hiv model. Mathematical Problems in Engineering
2009.
Yoo, J., Z. Sun, M. Greenacre, Q. Ma, D. Chung, et al., 2022 A
guideline for the statistical analysis of compositional data in
immunology. arXiv preprint arXiv:2201.07945 .
Yousefnezhad, M., C.-Y. Kao, and S. A. Mohammadi, 2021 Optimal
chemotherapy for brain tumor growth in a reaction-diffusion
model. SIAM Journal on Applied Mathematics 81: 1077–1097.
Yulmetyev, R. M., S. A. Demin, and P. Hänggi, 2006 Manifestation
of Chaos in real complex systems: Case of parkinson’s disease. In The logistic map and the route to Chaos: From the beginnings to
modern applications, pp. 175–196, Springer.
Zhang, X., Z. Wu, and L. Chua, 2020 Hearts are poised near the
edge of Chaos. International Journal of Bifurcation and Chaos 30:
2030023.
There are 110 citations in total.
Details
Primary Language
English
Subjects
Biological Mathematics, Complex Systems in Mathematics, Dynamical Systems in Applications, Biomedical Engineering (Other)
Boubaker, O. (2024). Chaos in Physiological Control Systems: Health or Disease?. Chaos Theory and Applications, 6(1), 1-12. https://doi.org/10.51537/chaos.1413955