Research Article
BibTex RIS Cite

Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy with Thermoluminances Dosimeters

Year 2023, , 696 - 702, 29.12.2023
https://doi.org/10.33808/clinexphealthsci.1194836

Abstract

Objective: This study aimed to assess the effects of denture materials on dose distribution on a head and neck radiotherapy-appropriate model and calculate the thickness of a stent by polyvinyl siloxane dental impression material for shielding scattered radiation from dental restorations.
Methods: In the first step of the study, 5mm diameter and 5mm height of cylindrical dental material of titanium, zirconia lithium disilicate were irradiated with 6-Megavoltage photons from a clinical linear accelerator. In the second step, dental materials at the center of polyvinyl siloxane thicknesses of 5, 10, and 20mm were irradiated with 2 Gray and 10 Gray fractional doses. Measurements were made using three thermoluminescent dosimeters positioned laterally. The percentage backscattered dose and percentage dose decrease values were calculated to interpret the results.
Results: According to the result, dosages scattered from dental materials increased for samples irradiated with 2Gy; a decreased dose was reported for samples irradiated with a 10Gy. 5mm PVS samples provided higher dose attenuation than others. Regardless of dental material, it is seen that the attenuation intensities calculated from TLD-100 dosimeters ranged from 22.7 to 38,62 for 2Gy, and 10.01 to 38,87 for 10Gy.
Conclusion: Dental material alters the scattered radiation. In irradiated head and neck cancer patients, a 5mm thick guard is sufficient to prevent radiation diffused from dental materials in clinical usage.

Supporting Institution

The Scientific Research Commission of Çanakkale Onsekiz Mart University

Project Number

THD-2019-3029

Thanks

The authors thank Dr. Gökçen Ateş for their assistance in preparing this manuscript.

References

  • Connor NP, Cohen SB, Kammer RE, Sullivan PA, Brewer KA, Hong TS, Chappell RJ, Harariet PM. Impact of conventional radiotherapy on health-related quality of life and critical functions of the head and neck. Int J Radiat Oncol. 2006;65(4):1051-1062. DOI:10.1016/j.ijrobp.2006.01.054.
  • Bahreyni Toossi MT, Ghorbani M, Akbari F, Mehrpouyan M, Sobhkhiz Sabet L. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy. Australas Phys Eng Sci Med. 2016;39(1):113-122. DOI:10.1007/s13246-015-0404-z.
  • Andrews N, Griffiths C. Dental Complications of Head and Neck Radiotherapy: Part 2. Aust Dent J. 2001;46(3):174-182. DOI:10.1111/j.1834-7819.2001.tb00278.x.
  • Chang K-P, Lin W-T, Shiau A-C, Chie Y-H. Dosimetric distribution of the surroundings of different dental crowns and implants during LINAC photon irradiation. Radiat Phys Chem. 2014;104:339-344. DOI:10.1016/j.radphyschem.2013.11.026
  • Chin DWH, Treister N, Friedland B, Cormack RA, Tishler RB, Makrigiorgos GM, Court LE. Effect of dental restorations and prostheses on radiotherapy dose distribution: a Monte Carlo study. J Appl Clin Med Phys. 2009;10(1):80-89. DOI:10.1120/jacmp.v10i1.2853.
  • Tso T V., Hurwitz M, Margalit DN, Lee SJ, Williams CL, Rosen EB. Radiation dose enhancement associated with contemporary dental materials. J Prosthet Dent. 2019;121(4):703-707. DOI:10.1016/j.prosdent.2018.07.012.
  • Reitemeier B, Reitemeier G, Schmidt A, Schaald W, Blochberger P, Lehmann D. Evaluation of a device for attenuation of electron release from dental restorations in a therapeutic radiation field. J Prosthet Dent. 2002;87(3):323-327. DOI:10.1067/mpr.2002.122506.
  • Appendino P, Della Ferrera F, Nassisi D, Blandino G, Gino E, Solla SD, Ruo Redda MG. Are intraoral customized stents still necessary in the era of highly conformal radiotherapy for head and neck cancer? Case series and literature review. Reports Pract Oncol Radiother. 2019;24(5):491-498. DOI:10.1016/j.rpor.2019.07.012.
  • Inoue Y, Yamagata K, Nakamura M, Ohnishi K, Tabuchi K, Bukawa H. Are intraoral stents effective for reducing the severity of oral mucositis during radiotherapy for maxillary and nasal cavity cancer? J Oral Maxillofac Surg. 2020;78(7):1214.e1-1214.e8. DOI:10.1016/j.joms.2020.02.009.
  • Brandão TB, da Graça Pinto H, Vechiato Filho AJ, Faria KM, de Oliveira MCQ, Prado-Ribeiro AC, Dias RB, Santos-Silva AR, Victor Eduardo de Souza Batista. Are intraoral stents effective in reducing oral toxicities caused by radiotherapy? A systematic review and meta-analysis. J Prosthet Dent. 2021;1-7. DOI:10.1016/j.prosdent.2021.03.009.
  • Aygün B. Improving neutron and gamma radiation shielding properties of polysiloxane /Cr2O3 –Fe2O3 added composite material. Int J Sci Eng Res. 2019;10(9):18-25.
  • Farahani M, Eichmiller FC, McLaughlin WL. Metal–polysiloxane shields for radiation therapy of maxillo–facial tumors. Med Phys. 1991;18(2):273-278. DOI:10.1118/1.596724
  • Wang RR, Olmsted LW. A direct method for fabricating tongue-shielding stent. J Prosthet Dent. 1995;74(2):171-173. DOI:10.1016/s0022-3913(05)80182-9.
  • Kawamura M, Maeda Y, Takamatsu S, Tameshige Y, Sasaki M, Asahi S, Shimizu Y, Yamamoto K, Tamamura H, Kondo S. The usefulness of vinyl polysiloxane dental impression material as a proton beam stopper to save normal tissue during irradiation of the oral cavity: Basic and clinical verifications. Med Phys. 2013;40(8):081707. DOI:10.1118/1.4813300
  • Azizi M, Mowlavi AA, Ghorbani M, Azadegan B, Akbari F. Dosimetric evaluation of scattered and attenuated radiation due to dental restorations in head and neck radiotherapy. J Radiat Res Appl Sci. 2018;11(1):23-28. DOI:10.1016/j.jrras.2017.10.
  • Olko P. Advantages and disadvantages of luminescence dosimetry. Radiat Meas. 2010;45(3–6):506-511. DOI:10.1016/j.radmeas.2010.01.016.
  • Akyol O, Olgar T, Toklu T, Eren H, Dirican B. Dose distrubution evaluation of different dental implants on a real human dry-skull model for head and neck cancer radiotherapy. Radiat Phys Chem. 2021;189:109751. DOI:10.1016/j.radphyschem.2021.109751.
  • Beyzadeoglu M, Dirican B, Oysul K, Ozen J, Ucok O. Evaluation of scatter dose of dental titanium implants exposed to photon beams of different energies and irradiation angles in head and neck radiotherapy. Dentomaxillofacial Radiol. 2006;35(1):14-17. DOI:10.1259/dmfr/28125805.
  • Azizi M, Mowlavi A, Ghorbani M, Davenport D. Effect of various dental restorations on dose distribution of 6 MV photon beam. J Cancer Res Ther. 2017;13(3):538-543. DOI:10.1259/dmfr/28125805.
  • Jabbari K, Senobari S, Roayaei M, Rostampour M. Designing and dosimetry of a shield for photon fields of radiation therapy in oral cavity cancer. J Med Signals Sens. 2015;5(2):110.
  • Klevenhagen SC, Lambert GD, Arbabi A. Backscattering in electron beam therapy for energies between 3 and 35 MeV. Phys Med Biol. 1982;27(3):363. DOI:10.1088/0031-9155/27/3/003.
  • Feng Z, Wang P, Gong L, Xu L, Zhang J, Zheng J, Zhang D, Tian T, Wang P. Construction and clinical evaluation of a new customized bite block used in radiotherapy of head and neck cancer. Cancer/Radiothérapie. 2019;23(2):125-131. DOI:10.1016/j.canrad.2018.05.005.
  • Friedrich RE, Todorovic M, Todrovic M, Krüll A. Simulation of scattering effects of irradiation on surroundings using the example of titanium dental implants: A Monte Carlo approach. Anticancer Res. 2010;30(5):1727-1730.
Year 2023, , 696 - 702, 29.12.2023
https://doi.org/10.33808/clinexphealthsci.1194836

Abstract

Project Number

THD-2019-3029

References

  • Connor NP, Cohen SB, Kammer RE, Sullivan PA, Brewer KA, Hong TS, Chappell RJ, Harariet PM. Impact of conventional radiotherapy on health-related quality of life and critical functions of the head and neck. Int J Radiat Oncol. 2006;65(4):1051-1062. DOI:10.1016/j.ijrobp.2006.01.054.
  • Bahreyni Toossi MT, Ghorbani M, Akbari F, Mehrpouyan M, Sobhkhiz Sabet L. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy. Australas Phys Eng Sci Med. 2016;39(1):113-122. DOI:10.1007/s13246-015-0404-z.
  • Andrews N, Griffiths C. Dental Complications of Head and Neck Radiotherapy: Part 2. Aust Dent J. 2001;46(3):174-182. DOI:10.1111/j.1834-7819.2001.tb00278.x.
  • Chang K-P, Lin W-T, Shiau A-C, Chie Y-H. Dosimetric distribution of the surroundings of different dental crowns and implants during LINAC photon irradiation. Radiat Phys Chem. 2014;104:339-344. DOI:10.1016/j.radphyschem.2013.11.026
  • Chin DWH, Treister N, Friedland B, Cormack RA, Tishler RB, Makrigiorgos GM, Court LE. Effect of dental restorations and prostheses on radiotherapy dose distribution: a Monte Carlo study. J Appl Clin Med Phys. 2009;10(1):80-89. DOI:10.1120/jacmp.v10i1.2853.
  • Tso T V., Hurwitz M, Margalit DN, Lee SJ, Williams CL, Rosen EB. Radiation dose enhancement associated with contemporary dental materials. J Prosthet Dent. 2019;121(4):703-707. DOI:10.1016/j.prosdent.2018.07.012.
  • Reitemeier B, Reitemeier G, Schmidt A, Schaald W, Blochberger P, Lehmann D. Evaluation of a device for attenuation of electron release from dental restorations in a therapeutic radiation field. J Prosthet Dent. 2002;87(3):323-327. DOI:10.1067/mpr.2002.122506.
  • Appendino P, Della Ferrera F, Nassisi D, Blandino G, Gino E, Solla SD, Ruo Redda MG. Are intraoral customized stents still necessary in the era of highly conformal radiotherapy for head and neck cancer? Case series and literature review. Reports Pract Oncol Radiother. 2019;24(5):491-498. DOI:10.1016/j.rpor.2019.07.012.
  • Inoue Y, Yamagata K, Nakamura M, Ohnishi K, Tabuchi K, Bukawa H. Are intraoral stents effective for reducing the severity of oral mucositis during radiotherapy for maxillary and nasal cavity cancer? J Oral Maxillofac Surg. 2020;78(7):1214.e1-1214.e8. DOI:10.1016/j.joms.2020.02.009.
  • Brandão TB, da Graça Pinto H, Vechiato Filho AJ, Faria KM, de Oliveira MCQ, Prado-Ribeiro AC, Dias RB, Santos-Silva AR, Victor Eduardo de Souza Batista. Are intraoral stents effective in reducing oral toxicities caused by radiotherapy? A systematic review and meta-analysis. J Prosthet Dent. 2021;1-7. DOI:10.1016/j.prosdent.2021.03.009.
  • Aygün B. Improving neutron and gamma radiation shielding properties of polysiloxane /Cr2O3 –Fe2O3 added composite material. Int J Sci Eng Res. 2019;10(9):18-25.
  • Farahani M, Eichmiller FC, McLaughlin WL. Metal–polysiloxane shields for radiation therapy of maxillo–facial tumors. Med Phys. 1991;18(2):273-278. DOI:10.1118/1.596724
  • Wang RR, Olmsted LW. A direct method for fabricating tongue-shielding stent. J Prosthet Dent. 1995;74(2):171-173. DOI:10.1016/s0022-3913(05)80182-9.
  • Kawamura M, Maeda Y, Takamatsu S, Tameshige Y, Sasaki M, Asahi S, Shimizu Y, Yamamoto K, Tamamura H, Kondo S. The usefulness of vinyl polysiloxane dental impression material as a proton beam stopper to save normal tissue during irradiation of the oral cavity: Basic and clinical verifications. Med Phys. 2013;40(8):081707. DOI:10.1118/1.4813300
  • Azizi M, Mowlavi AA, Ghorbani M, Azadegan B, Akbari F. Dosimetric evaluation of scattered and attenuated radiation due to dental restorations in head and neck radiotherapy. J Radiat Res Appl Sci. 2018;11(1):23-28. DOI:10.1016/j.jrras.2017.10.
  • Olko P. Advantages and disadvantages of luminescence dosimetry. Radiat Meas. 2010;45(3–6):506-511. DOI:10.1016/j.radmeas.2010.01.016.
  • Akyol O, Olgar T, Toklu T, Eren H, Dirican B. Dose distrubution evaluation of different dental implants on a real human dry-skull model for head and neck cancer radiotherapy. Radiat Phys Chem. 2021;189:109751. DOI:10.1016/j.radphyschem.2021.109751.
  • Beyzadeoglu M, Dirican B, Oysul K, Ozen J, Ucok O. Evaluation of scatter dose of dental titanium implants exposed to photon beams of different energies and irradiation angles in head and neck radiotherapy. Dentomaxillofacial Radiol. 2006;35(1):14-17. DOI:10.1259/dmfr/28125805.
  • Azizi M, Mowlavi A, Ghorbani M, Davenport D. Effect of various dental restorations on dose distribution of 6 MV photon beam. J Cancer Res Ther. 2017;13(3):538-543. DOI:10.1259/dmfr/28125805.
  • Jabbari K, Senobari S, Roayaei M, Rostampour M. Designing and dosimetry of a shield for photon fields of radiation therapy in oral cavity cancer. J Med Signals Sens. 2015;5(2):110.
  • Klevenhagen SC, Lambert GD, Arbabi A. Backscattering in electron beam therapy for energies between 3 and 35 MeV. Phys Med Biol. 1982;27(3):363. DOI:10.1088/0031-9155/27/3/003.
  • Feng Z, Wang P, Gong L, Xu L, Zhang J, Zheng J, Zhang D, Tian T, Wang P. Construction and clinical evaluation of a new customized bite block used in radiotherapy of head and neck cancer. Cancer/Radiothérapie. 2019;23(2):125-131. DOI:10.1016/j.canrad.2018.05.005.
  • Friedrich RE, Todorovic M, Todrovic M, Krüll A. Simulation of scattering effects of irradiation on surroundings using the example of titanium dental implants: A Monte Carlo approach. Anticancer Res. 2010;30(5):1727-1730.
There are 23 citations in total.

Details

Primary Language English
Subjects Prosthodontics
Journal Section Articles
Authors

Habibe Öztürk 0000-0002-5985-9421

Yeşim Deniz 0000-0002-6967-5378

Çağatay Aktaş 0000-0001-9040-3089

Esma Başak Gül Aygün 0000-0002-9475-4035

Project Number THD-2019-3029
Publication Date December 29, 2023
Submission Date October 27, 2022
Published in Issue Year 2023

Cite

APA Öztürk, H., Deniz, Y., Aktaş, Ç., Gül Aygün, E. B. (2023). Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy with Thermoluminances Dosimeters. Clinical and Experimental Health Sciences, 13(4), 696-702. https://doi.org/10.33808/clinexphealthsci.1194836
AMA Öztürk H, Deniz Y, Aktaş Ç, Gül Aygün EB. Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy with Thermoluminances Dosimeters. Clinical and Experimental Health Sciences. December 2023;13(4):696-702. doi:10.33808/clinexphealthsci.1194836
Chicago Öztürk, Habibe, Yeşim Deniz, Çağatay Aktaş, and Esma Başak Gül Aygün. “Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy With Thermoluminances Dosimeters”. Clinical and Experimental Health Sciences 13, no. 4 (December 2023): 696-702. https://doi.org/10.33808/clinexphealthsci.1194836.
EndNote Öztürk H, Deniz Y, Aktaş Ç, Gül Aygün EB (December 1, 2023) Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy with Thermoluminances Dosimeters. Clinical and Experimental Health Sciences 13 4 696–702.
IEEE H. Öztürk, Y. Deniz, Ç. Aktaş, and E. B. Gül Aygün, “Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy with Thermoluminances Dosimeters”, Clinical and Experimental Health Sciences, vol. 13, no. 4, pp. 696–702, 2023, doi: 10.33808/clinexphealthsci.1194836.
ISNAD Öztürk, Habibe et al. “Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy With Thermoluminances Dosimeters”. Clinical and Experimental Health Sciences 13/4 (December 2023), 696-702. https://doi.org/10.33808/clinexphealthsci.1194836.
JAMA Öztürk H, Deniz Y, Aktaş Ç, Gül Aygün EB. Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy with Thermoluminances Dosimeters. Clinical and Experimental Health Sciences. 2023;13:696–702.
MLA Öztürk, Habibe et al. “Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy With Thermoluminances Dosimeters”. Clinical and Experimental Health Sciences, vol. 13, no. 4, 2023, pp. 696-02, doi:10.33808/clinexphealthsci.1194836.
Vancouver Öztürk H, Deniz Y, Aktaş Ç, Gül Aygün EB. Investigation of Dosage Distributions of Polyvinyl Siloxane Dental Impression Shields for Head and Neck Radiotherapy with Thermoluminances Dosimeters. Clinical and Experimental Health Sciences. 2023;13(4):696-702.

14639   14640