Research Article
BibTex RIS Cite

Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids

Year 2025, Volume: 15 Issue: 1, 170 - 174, 28.03.2025
https://doi.org/10.33808/clinexphealthsci.1548035

Abstract

Objective: In this study it was aimed to synthesize novel 1,3,4-thiadizole bearing 4(3H)-quinazolinone compounds, elucidate their structure and evaluate their anti-biofilm activity.
Methods: Four novel 4(3H)-quinazolinone compounds (1-4) were synthesized with a two step reaction starting from 5-bromoanthranilic acid. Their anti-biofilm activity was investigated.
Results: The final compounds’ structures were clarified by elemental analysis and spectroscopic methods (IR, 1H-NMR, 13C-NMR and MS). In the result of anti-biofilm activity studies, they possessed 26.0-30.0% biofilm formation inhibition.
Conclusion: Among the tested compounds, 6-bromo-3-{4-[5-(4-nitrophenylamino)-1,3,4-thiadiazol-2-yl]phenyl}-2-methylquinazolin-4(3H)-one formulated compound 3 was found as the most active one with 30.0% biofilm formation inhibition.

Ethical Statement

This study didn’t need an Ethics Committee Approval.

References

  • Gupta P, Gupta RK, Harjai K. Multiple virulence factors regulated by quorum sensing may help in establishment and colonisation of urinary tract by Pseudomonas aeruginosa during experimental urinary tract infection. Indian J Med Microbiol. 2013; 31(1): 29-33. https://doi.org/10.4103/0255-0857.108715
  • Brindhadevi K, LewisOscar F, Mylonakis E, Shanmugam S, Verma TN, Pugazhendhi A. Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem. 2020; 96: 49-57. https://doi.org/10.1016/j.procbio.2020.06.001
  • Rodriguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for Quorum Sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents. 2024 August 29. [Epub ahead of print]. https://doi.org/10.1016/j.ijantimicag.2024.107323
  • Zalcberg J. Overview of the tolerability of ‘Tomudex’ (raltitrexed) collective clinical experience in advanced colorectal cancer. Anti-Cancer Drugs. 1997; 8(2): 17-22. https://doi.org/10.1097/00001813-199708002-00004
  • Cutsem EV, Cunningham D, Maroun, J, Cervantes, A, Glimelius, B. Raltitrexed: current clinical status and future directions. Ann Oncol. 2002; 13: 513-522. https://doi.org/10.1093/annonc/mdf054
  • Fozard JR. Mechanism of the hypotensive effect of Ketanserin. J Cardiovasc Pharmacol. 1982; 4(5): 829-838. https://doi.org/10.1097/00005344-198209000-00020
  • Irannejad H, Emami S, Mirzaei H, Hashemi SM. Data on molecular docking of tautomers and enantiomers of ATTAF-1 and ATTAF-2 selectivity to the human/fungal lanosterol-14 α-demethylase. Data Brief. 2020; 31: 105942. https://doi.org/10.1016/j.dib.2020.105942
  • Cao X, Xu Y, Cao Y, Wang R, Zhou R, Chu W, Yang Y. Design, synthesis, and structure activity relationship studies of novel thienopyrrolidone derivatives with strong antifungal activity against Aspergillus fumigates. Eur J Med Chem. 2015; 102: 471-476. https://doi.org/10.1016/j.ejmech.2015.08.023
  • Ding Z, Nib T, Xie F, Hao Y, Yu S, Chai X, Jin Y, Wang T, Jian Y, Zhang D. Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus. Bioorg Med Chem Lett. 2020; 30: 126951. https://doi.org/10.1016/j.bmcl.2020.126951
  • Baranauskiene L, Skiudaite L, Michailoviene V, Petrauskas V, Matulis D. Thiazide and other Cl-benzenesulfonamide bearing clinical drug affinities for human carbonic anhydrases. PLoS One 2021; 16(6): e0253608. https://doi.org/10.1371/journal.pone.0253608
  • Sen D, Banerjee A, Ghosh AK, Chatterjee TK. Synthesis and antimalarial evaluation of some 4-quinazolinone derivatives based on febrifugine. J Adv Pharm Tech Res. 2010; 1(4): 401-405. https://doi.org/10.4103/0110-5558.76439
  • Back H, Pradhan S, Yoon Y, Kang W, Chae J, Han N, Miki N, Kwon K, Kim S, Yun H. Population pharmacokinetic modeling and simulation of Afloqualone to predict steady-state exposure levels. Int J Pharmacol. 2018; 14(2): 276-284. https://doi.org/10.3923/ijp.2018.276.284
  • Hussain MA, Chiu AT, Price WA, Timmermans PB, Shefter E. Anthihypertensive activity of 2-[(2-hydroxyphenyl)amino]-4(3H)-quinazolinone. Pharm Res. 1988; 5(4): 242-244. https://doi.org/10.1023/a:1015949931218
  • Rathod B, Joshi S, Regu S, Manikanta KVNS, Kumar H, Dubey S, Chowdhury A, Shaikh RP, Das A, Patel S, Satvase R, Chatterjee DR, Jain A, Garg R, Shard A. Design and synthesis of novel quinazolinone-based pyruvate kinase M2 activators as selective inhibitors of oral cancer cells. J Mol Struct. 2024; 1304: 134595. https://doi.org/10.1016/j.molstruc.2024.137595
  • El-Karim SSA, Syam YM, El Kerdawy AM, Abdel-Mohsen HT. Rational design and synthesis of novel quinazolinone N-acetohydrazides as type II multi-kinase inhibitors and potential anticancer agents. Bioorg Chem. 2024; 142: 106920. https://doi.org/10.1016/j.bioorg.2023.106920
  • Cheke RS, Shinde SD, Ambhore JP, Chaudhari SR, Bari SB. Quinazoline: An update on current status against convulsions. J Mol Struct. 2022; 1248: 131384. https://doi.org/10.1016/j.molstruc.2021.131384
  • Mravljak J, Slavec L,Hrast M, Sova M. Synthesis and evaluation of antioxidant properties of 2-substituted quinazolin-4(3H)-ones. Molecules 2021; 26: 6585. https://doi.org/10.3390/molecules26216585
  • Abbas SE, Awadallah FM, Ibrahin NA, Said EG, Kamel GM. New quinazolinone pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies. Eur J Med Chem. 2012; 53: 141-149. https://doi.org/10.1016/j.ejmech.2012.03.050
  • Mhetre UV, Haval NB, Bondle GM, Rathod SS, Choudhari PB, Kumari J, Sriram D, Haval KP. Design, synthesis and molecular docking study of novel triazole-quinazolinone hybrids as antimalarial and antitubercular agents. Bioorg Med Chem Lett. 2024; 108: 129800. https://doi.org/10.1016/j.bmcl.2024.129800
  • Hemalatha K, Madhumitha G. Study of binding interaction between anthelmintic 2,3-dihydroquinazolin-4-ones with bovine serum albumin by spectroscopic methods. J Lumin. 2016; 178: 163-171. https://doi.org/10.1016/j.jlumin.2016.05.041
  • Alamri MA, Afzal O, Akhtar MJ, Karim S, Husain M, Alossaimi MA, Riadi Y. Synthesis, in silico and in vitro studies of novel quinazolinone derivatives as potential SARS-CoV-2 3CLpro inhibitors. Arab J Chem. 2024; 17: 105384. https://doi.org/10.1016/j.arabjc.2023.105384
  • Deng Y, Chen M, Yi J, Zheng Y. Design, synthesis, and anti–tobacco mosaic virus activity evaluation of quinazolinone derivatives containing purine moieties. Phytochem Lett. 2024; 59: 10-14. https://doi.org/10.1016/j.phytol.2023.11.003
  • Qhobosheane MA, Legoabe LJ, Petzer A, Petzer JP. The monoamine oxidase inhibition properties of C6-mono- and N3/C6-disubstituted derivatives of 4(3H)-quinazolinone. Bioorg Chem. 2019; 85: 60-65. https://doi.org/10.1016/j.bioorg.2018.12.030
  • Khalifa MM, Sakr HM, Ibrahim A, Mansour AM, Ayyad RR. Design and synthesis of new benzylidene-quinazolinone hybrids as potential anti-diabetic agents: In vitro α-glucosidase inhibition, and docking studies. J Mol Struct. 2022; 1250: 131768. https://doi.org/10.1016/j.molstruc.2021.131768
  • Tokalı FS, Sağlamtaş R, Öztekin A, Yırtıcı Ü, Çomaklı V. New diacetic acids containing quinazolin-4(3H)-one: Synthesis, characterization, anticholinergic properties, DFT analysis and molecular docking studies. Chemistry Select 2023; 8(e202205039): 1-9. https://doi.org/10.1002/slct.202205039
  • Moftah HK, Mousa MHA, Elrazaz EZ, Kamel AS, Lasheen DS, Georgey HH. Novel quinazolinone Derivatives: Design, synthesis and in vivo evaluation as potential agents targeting Alzheimer disease. Bioorg Chem. 2024; 143: 107-065. https://doi.org/10.1016/j.bioorg.2023.107065
  • Bouley R, Ding, D, Peng Z, Bastian, M, Lastochkin E, Song W, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. Structure−activity relationship for the 4(3H)‑quinazolinone antibacterials. J Med Chem. 2016; 59: 5011-5021. https://doi.org/10.1021/acs.jmedchem.6b00372
  • Gatadi S, Lakshmi TV, Nanduri S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur J Med Chem. 2019; 170: 157-172. https://doi.org/10.1016/j.ejmech.2019.03.018
  • Liu T, Peng F, Cao X, Liu F, Wang Q, Liu L, Xue W. Design, synthesis, antibacterial activity, antiviral Activity, and mechanism of myricetin derivatives containing a quinazolinone moiety. ACS Omega 2021; 6: 30826-30833. https://doi.org/10.1021/acsomega.1c05256
  • Rasapalli S, Murphy ZF, Sammeta VR, Golen JA, Weig AW, Melander RJ, Melander C, Macha P, Vasudev MC. Synthesis and biofilm inhibition studies of 2-(2-amino-6-arylpyrimidin-4-yl)quinazolin-4(3H)-ones. Bioorg Med Chem Lett. 2020; 30: 127550. https://doi.org/10.1016/j.bmcl.2020.127550
  • Rakesh KP, Kumara HK, Ullas BC, Shivakumara J, Gowda DC. Amino acids conjugated quinazolinone-Schiff’s bases as potential antimicrobial agents: Synthesis, SAR and molecular docking studies. Bioorg Chem. 2019; 90: 103093. https://doi.org/10.1016/j.bioorg.2019.103093
  • Türk S, Karakuş S, Maryam A, Oruç-Emre EE. Synthesis, characterization, antituberculosis activity and computational studies on novel Schiff bases of 1,3,4-thiadiazole derivatives. J Res Pharm. 2020; 24(6): 793-800. https://doi.org/10.35333/jrp.2020.232
  • Kadi AA, El-Brollosy NR, Al-Deeb OA, Habib EE, Ibrahim TM, El-Emam AA. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur J Med Chem. 2007; 42: 235-242. https://doi.org/10.1016/j.ejmech.2006.10.003
  • Türk S, Karakuş S, Ece A, Ulusoy S, Boşgelmez-Tınaz G. Synthesis, structure elucidation and biological activities of some novel 4(3H)-quinazolinones as anti-biofilm agents. Lett Drug Des Discov. 2019; 16: 313-321. https://doi.org/10.2174/1570180815666180621101123
  • Türk S, Turan K, Ulusoy S, Karakuş S, Boşgelmez-Tınaz G. Synthesis, characterization and biological activity studies on amide derivatives. Istanbul J Pharm. 2018; 48(3): 76-81. https://doi.org/10.26650/IstanbulJPharm.2018.18007
  • Karakus S, Kocyigit-Kaymakcioglu B, Toklu HZ, Aricioglu F, Rollas S. Synthesis and anticonvulsant activity of new N-(alkyl/substitutedaryl)-N'-4-(5-cyclohexylamino)-1,3,4-thiadiazole-2-yl)phenythioureas. Arch Pharm. 2009; 342(1): 48-53. https://doi.org/10.1002/ardp.200800118
  • Ulusoy S, Akalın RB, Çevikbaş H, Berisha A, Oral A, Boşgelmez-Tinaz G. Zeolite 4A as a jammer of bacterial communication in Chromobacterium violaceum and Pseudomonas aeruginosa. Future Microbiol. 2022; 17(11), 861-871. https://doi.org/10.2217/fmb-2021-0174
  • Uraz M, Karakuş S, Mohsen UA, Kaplancıklı ZA, Rollas S. The synthesis and evaluation of anti-acetylcholinesterase activity of some 4(3H)-quinazolinone derivatives bearing substituted 1,3,4-thiadiazole. Marmara Pharm J. 2017; 21: 96-101. https://doi.org/10.12991/marupj.259886
Year 2025, Volume: 15 Issue: 1, 170 - 174, 28.03.2025
https://doi.org/10.33808/clinexphealthsci.1548035

Abstract

References

  • Gupta P, Gupta RK, Harjai K. Multiple virulence factors regulated by quorum sensing may help in establishment and colonisation of urinary tract by Pseudomonas aeruginosa during experimental urinary tract infection. Indian J Med Microbiol. 2013; 31(1): 29-33. https://doi.org/10.4103/0255-0857.108715
  • Brindhadevi K, LewisOscar F, Mylonakis E, Shanmugam S, Verma TN, Pugazhendhi A. Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem. 2020; 96: 49-57. https://doi.org/10.1016/j.procbio.2020.06.001
  • Rodriguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for Quorum Sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents. 2024 August 29. [Epub ahead of print]. https://doi.org/10.1016/j.ijantimicag.2024.107323
  • Zalcberg J. Overview of the tolerability of ‘Tomudex’ (raltitrexed) collective clinical experience in advanced colorectal cancer. Anti-Cancer Drugs. 1997; 8(2): 17-22. https://doi.org/10.1097/00001813-199708002-00004
  • Cutsem EV, Cunningham D, Maroun, J, Cervantes, A, Glimelius, B. Raltitrexed: current clinical status and future directions. Ann Oncol. 2002; 13: 513-522. https://doi.org/10.1093/annonc/mdf054
  • Fozard JR. Mechanism of the hypotensive effect of Ketanserin. J Cardiovasc Pharmacol. 1982; 4(5): 829-838. https://doi.org/10.1097/00005344-198209000-00020
  • Irannejad H, Emami S, Mirzaei H, Hashemi SM. Data on molecular docking of tautomers and enantiomers of ATTAF-1 and ATTAF-2 selectivity to the human/fungal lanosterol-14 α-demethylase. Data Brief. 2020; 31: 105942. https://doi.org/10.1016/j.dib.2020.105942
  • Cao X, Xu Y, Cao Y, Wang R, Zhou R, Chu W, Yang Y. Design, synthesis, and structure activity relationship studies of novel thienopyrrolidone derivatives with strong antifungal activity against Aspergillus fumigates. Eur J Med Chem. 2015; 102: 471-476. https://doi.org/10.1016/j.ejmech.2015.08.023
  • Ding Z, Nib T, Xie F, Hao Y, Yu S, Chai X, Jin Y, Wang T, Jian Y, Zhang D. Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus. Bioorg Med Chem Lett. 2020; 30: 126951. https://doi.org/10.1016/j.bmcl.2020.126951
  • Baranauskiene L, Skiudaite L, Michailoviene V, Petrauskas V, Matulis D. Thiazide and other Cl-benzenesulfonamide bearing clinical drug affinities for human carbonic anhydrases. PLoS One 2021; 16(6): e0253608. https://doi.org/10.1371/journal.pone.0253608
  • Sen D, Banerjee A, Ghosh AK, Chatterjee TK. Synthesis and antimalarial evaluation of some 4-quinazolinone derivatives based on febrifugine. J Adv Pharm Tech Res. 2010; 1(4): 401-405. https://doi.org/10.4103/0110-5558.76439
  • Back H, Pradhan S, Yoon Y, Kang W, Chae J, Han N, Miki N, Kwon K, Kim S, Yun H. Population pharmacokinetic modeling and simulation of Afloqualone to predict steady-state exposure levels. Int J Pharmacol. 2018; 14(2): 276-284. https://doi.org/10.3923/ijp.2018.276.284
  • Hussain MA, Chiu AT, Price WA, Timmermans PB, Shefter E. Anthihypertensive activity of 2-[(2-hydroxyphenyl)amino]-4(3H)-quinazolinone. Pharm Res. 1988; 5(4): 242-244. https://doi.org/10.1023/a:1015949931218
  • Rathod B, Joshi S, Regu S, Manikanta KVNS, Kumar H, Dubey S, Chowdhury A, Shaikh RP, Das A, Patel S, Satvase R, Chatterjee DR, Jain A, Garg R, Shard A. Design and synthesis of novel quinazolinone-based pyruvate kinase M2 activators as selective inhibitors of oral cancer cells. J Mol Struct. 2024; 1304: 134595. https://doi.org/10.1016/j.molstruc.2024.137595
  • El-Karim SSA, Syam YM, El Kerdawy AM, Abdel-Mohsen HT. Rational design and synthesis of novel quinazolinone N-acetohydrazides as type II multi-kinase inhibitors and potential anticancer agents. Bioorg Chem. 2024; 142: 106920. https://doi.org/10.1016/j.bioorg.2023.106920
  • Cheke RS, Shinde SD, Ambhore JP, Chaudhari SR, Bari SB. Quinazoline: An update on current status against convulsions. J Mol Struct. 2022; 1248: 131384. https://doi.org/10.1016/j.molstruc.2021.131384
  • Mravljak J, Slavec L,Hrast M, Sova M. Synthesis and evaluation of antioxidant properties of 2-substituted quinazolin-4(3H)-ones. Molecules 2021; 26: 6585. https://doi.org/10.3390/molecules26216585
  • Abbas SE, Awadallah FM, Ibrahin NA, Said EG, Kamel GM. New quinazolinone pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies. Eur J Med Chem. 2012; 53: 141-149. https://doi.org/10.1016/j.ejmech.2012.03.050
  • Mhetre UV, Haval NB, Bondle GM, Rathod SS, Choudhari PB, Kumari J, Sriram D, Haval KP. Design, synthesis and molecular docking study of novel triazole-quinazolinone hybrids as antimalarial and antitubercular agents. Bioorg Med Chem Lett. 2024; 108: 129800. https://doi.org/10.1016/j.bmcl.2024.129800
  • Hemalatha K, Madhumitha G. Study of binding interaction between anthelmintic 2,3-dihydroquinazolin-4-ones with bovine serum albumin by spectroscopic methods. J Lumin. 2016; 178: 163-171. https://doi.org/10.1016/j.jlumin.2016.05.041
  • Alamri MA, Afzal O, Akhtar MJ, Karim S, Husain M, Alossaimi MA, Riadi Y. Synthesis, in silico and in vitro studies of novel quinazolinone derivatives as potential SARS-CoV-2 3CLpro inhibitors. Arab J Chem. 2024; 17: 105384. https://doi.org/10.1016/j.arabjc.2023.105384
  • Deng Y, Chen M, Yi J, Zheng Y. Design, synthesis, and anti–tobacco mosaic virus activity evaluation of quinazolinone derivatives containing purine moieties. Phytochem Lett. 2024; 59: 10-14. https://doi.org/10.1016/j.phytol.2023.11.003
  • Qhobosheane MA, Legoabe LJ, Petzer A, Petzer JP. The monoamine oxidase inhibition properties of C6-mono- and N3/C6-disubstituted derivatives of 4(3H)-quinazolinone. Bioorg Chem. 2019; 85: 60-65. https://doi.org/10.1016/j.bioorg.2018.12.030
  • Khalifa MM, Sakr HM, Ibrahim A, Mansour AM, Ayyad RR. Design and synthesis of new benzylidene-quinazolinone hybrids as potential anti-diabetic agents: In vitro α-glucosidase inhibition, and docking studies. J Mol Struct. 2022; 1250: 131768. https://doi.org/10.1016/j.molstruc.2021.131768
  • Tokalı FS, Sağlamtaş R, Öztekin A, Yırtıcı Ü, Çomaklı V. New diacetic acids containing quinazolin-4(3H)-one: Synthesis, characterization, anticholinergic properties, DFT analysis and molecular docking studies. Chemistry Select 2023; 8(e202205039): 1-9. https://doi.org/10.1002/slct.202205039
  • Moftah HK, Mousa MHA, Elrazaz EZ, Kamel AS, Lasheen DS, Georgey HH. Novel quinazolinone Derivatives: Design, synthesis and in vivo evaluation as potential agents targeting Alzheimer disease. Bioorg Chem. 2024; 143: 107-065. https://doi.org/10.1016/j.bioorg.2023.107065
  • Bouley R, Ding, D, Peng Z, Bastian, M, Lastochkin E, Song W, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. Structure−activity relationship for the 4(3H)‑quinazolinone antibacterials. J Med Chem. 2016; 59: 5011-5021. https://doi.org/10.1021/acs.jmedchem.6b00372
  • Gatadi S, Lakshmi TV, Nanduri S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur J Med Chem. 2019; 170: 157-172. https://doi.org/10.1016/j.ejmech.2019.03.018
  • Liu T, Peng F, Cao X, Liu F, Wang Q, Liu L, Xue W. Design, synthesis, antibacterial activity, antiviral Activity, and mechanism of myricetin derivatives containing a quinazolinone moiety. ACS Omega 2021; 6: 30826-30833. https://doi.org/10.1021/acsomega.1c05256
  • Rasapalli S, Murphy ZF, Sammeta VR, Golen JA, Weig AW, Melander RJ, Melander C, Macha P, Vasudev MC. Synthesis and biofilm inhibition studies of 2-(2-amino-6-arylpyrimidin-4-yl)quinazolin-4(3H)-ones. Bioorg Med Chem Lett. 2020; 30: 127550. https://doi.org/10.1016/j.bmcl.2020.127550
  • Rakesh KP, Kumara HK, Ullas BC, Shivakumara J, Gowda DC. Amino acids conjugated quinazolinone-Schiff’s bases as potential antimicrobial agents: Synthesis, SAR and molecular docking studies. Bioorg Chem. 2019; 90: 103093. https://doi.org/10.1016/j.bioorg.2019.103093
  • Türk S, Karakuş S, Maryam A, Oruç-Emre EE. Synthesis, characterization, antituberculosis activity and computational studies on novel Schiff bases of 1,3,4-thiadiazole derivatives. J Res Pharm. 2020; 24(6): 793-800. https://doi.org/10.35333/jrp.2020.232
  • Kadi AA, El-Brollosy NR, Al-Deeb OA, Habib EE, Ibrahim TM, El-Emam AA. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur J Med Chem. 2007; 42: 235-242. https://doi.org/10.1016/j.ejmech.2006.10.003
  • Türk S, Karakuş S, Ece A, Ulusoy S, Boşgelmez-Tınaz G. Synthesis, structure elucidation and biological activities of some novel 4(3H)-quinazolinones as anti-biofilm agents. Lett Drug Des Discov. 2019; 16: 313-321. https://doi.org/10.2174/1570180815666180621101123
  • Türk S, Turan K, Ulusoy S, Karakuş S, Boşgelmez-Tınaz G. Synthesis, characterization and biological activity studies on amide derivatives. Istanbul J Pharm. 2018; 48(3): 76-81. https://doi.org/10.26650/IstanbulJPharm.2018.18007
  • Karakus S, Kocyigit-Kaymakcioglu B, Toklu HZ, Aricioglu F, Rollas S. Synthesis and anticonvulsant activity of new N-(alkyl/substitutedaryl)-N'-4-(5-cyclohexylamino)-1,3,4-thiadiazole-2-yl)phenythioureas. Arch Pharm. 2009; 342(1): 48-53. https://doi.org/10.1002/ardp.200800118
  • Ulusoy S, Akalın RB, Çevikbaş H, Berisha A, Oral A, Boşgelmez-Tinaz G. Zeolite 4A as a jammer of bacterial communication in Chromobacterium violaceum and Pseudomonas aeruginosa. Future Microbiol. 2022; 17(11), 861-871. https://doi.org/10.2217/fmb-2021-0174
  • Uraz M, Karakuş S, Mohsen UA, Kaplancıklı ZA, Rollas S. The synthesis and evaluation of anti-acetylcholinesterase activity of some 4(3H)-quinazolinone derivatives bearing substituted 1,3,4-thiadiazole. Marmara Pharm J. 2017; 21: 96-101. https://doi.org/10.12991/marupj.259886
There are 38 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Sevda Türk 0000-0002-4567-6739

Seyhan Ulusoy 0000-0002-6559-1177

Sevgi Karakuş 0000-0002-7911-8372

Gülgün Tınaz 0000-0003-1080-4419

Early Pub Date March 23, 2025
Publication Date March 28, 2025
Submission Date September 10, 2024
Acceptance Date January 23, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Türk, S., Ulusoy, S., Karakuş, S., Tınaz, G. (2025). Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids. Clinical and Experimental Health Sciences, 15(1), 170-174. https://doi.org/10.33808/clinexphealthsci.1548035
AMA Türk S, Ulusoy S, Karakuş S, Tınaz G. Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids. Clinical and Experimental Health Sciences. March 2025;15(1):170-174. doi:10.33808/clinexphealthsci.1548035
Chicago Türk, Sevda, Seyhan Ulusoy, Sevgi Karakuş, and Gülgün Tınaz. “Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids”. Clinical and Experimental Health Sciences 15, no. 1 (March 2025): 170-74. https://doi.org/10.33808/clinexphealthsci.1548035.
EndNote Türk S, Ulusoy S, Karakuş S, Tınaz G (March 1, 2025) Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids. Clinical and Experimental Health Sciences 15 1 170–174.
IEEE S. Türk, S. Ulusoy, S. Karakuş, and G. Tınaz, “Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids”, Clinical and Experimental Health Sciences, vol. 15, no. 1, pp. 170–174, 2025, doi: 10.33808/clinexphealthsci.1548035.
ISNAD Türk, Sevda et al. “Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids”. Clinical and Experimental Health Sciences 15/1 (March 2025), 170-174. https://doi.org/10.33808/clinexphealthsci.1548035.
JAMA Türk S, Ulusoy S, Karakuş S, Tınaz G. Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids. Clinical and Experimental Health Sciences. 2025;15:170–174.
MLA Türk, Sevda et al. “Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids”. Clinical and Experimental Health Sciences, vol. 15, no. 1, 2025, pp. 170-4, doi:10.33808/clinexphealthsci.1548035.
Vancouver Türk S, Ulusoy S, Karakuş S, Tınaz G. Synthesis and Anti-Biofilm Activity Studies on Novel Quinazolinone-Thiadiazole Hybrids. Clinical and Experimental Health Sciences. 2025;15(1):170-4.

14639   14640