In this paper, we present a new modulus of continuity for locally integrable function spaces which is effected by the natural structure of the L_{p} space. After basic properties of it are expressed, we provide a quantitative type theorem for the rate of convergence of convolution type integral operators and iterates of them. Moreover, we state their global smoothness preservation property including the new modulus of continuity. Finally, the obtained results are performed to the Gauss-Weierstrass operators.
Convolution type integral operators measurable functions weighted modulus of continuity.
Birincil Dil | İngilizce |
---|---|
Konular | Yaklaşım Teorisi ve Asimptotik Yöntemler |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 17 Kasım 2023 |
Yayımlanma Tarihi | 15 Aralık 2023 |
Gönderilme Tarihi | 26 Ekim 2023 |
Kabul Tarihi | 15 Kasım 2023 |
Yayımlandığı Sayı | Yıl 2023 |