Araştırma Makalesi
BibTex RIS Kaynak Göster

On discrete orthogonal U-Bernoulli Korobov-type polynomials

Yıl 2024, , 1 - 10, 16.12.2024
https://doi.org/10.33205/cma.1502670

Öz

The primary objective of this paper is to introduce and examine the new class of discrete orthogonal polynomials called $U$-Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and explicit representations for this polynomial class. Most of the results are proven through the utilization of generating function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with these polynomials.

Kaynakça

  • F. Avram, M.S. Taqqu: Noncentral limit theorems and Appell polynomials, Ann. Probab., 15 (1987), 767–775.
  • J. Babini: Polinomios generalizados de Bernoulli y sus correlativos, Rev. Mat. Hisp.-Am., 10 (4) (1935), 23–25.
  • L. Carlitz: A note on Bernoulli and Euler polynomials of the second kind, Scr. Math., 25 (1961), 323–330.
  • L. Carlitz: Degenerate Stirling, Beroulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
  • C. V. L. Charlier: Über die darstellung willkurlicher funktionen, Arkiv för Matematik, Astronomi och Fysik., 25 (3) (1970), 1–11.
  • A.G. Asensi, E. Labarga, E. J.M. Ceniceros and J., Varona: Boole-Dunklpolynomialsandgeneralizations, Rev.RealAcad.Cienc.ExactasFis.Nat.Ser.A-Mat., 118 (2024), Article ID: 16.
  • I. Gavrea, M. Ivan: Approximation properties related to the Bell polynomials, Constr. Math. Anal., 4 (2) (2021), 253–259.
  • R.L. Graham, D.E. Knuth, O: Patashnik, Concrete Mathematics, A Foundation for Computer Science, 2nd ed., AddisonWesley, Reading, MA (1994).
  • C. Jordan: Sur les polynomes analogues aux polynomes de Bernoulli et sur des formules de sommation analogues à celle de MacLaurin-Euler, Acta Szeged, 4 (1929), 130–150.
  • V. Kostov: The disconnectedness of certain sets defined after uni-variate polynomials, Constr. Math. Anal., 5 (3) (2022), 119–133.
  • D.E. Knuth: Two notes on notation, Am. Math. Mon., 99 (1992), 403–422.
  • Korobov: Special polynomials and their applications diophantine approximations, Math. Notes, 2 ( 1996), 77–89.
  • J. Meixner: Orthogonale polynomsysteme mit einem besonderen Gestalt der erzeugenden funktion, J. London Math. Soc., 9 (1934), 6–13.
  • Y. Quintana, W. Ramírez and A. Urieles: Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14 (4) (2020), 583–596.
  • W. Ramírez, D. Bedoya, A. Urieles, C. Cesarano and M. Ortega: New U-Bernoulli, U-Euler and U-Genocchi Polynomials and Their Matrices, Carpathian Math. Publ., 15 (2) (2023), 449–467.
  • J. Rey Pastor: Polinomios correlativos de los de Bernoulli, Bol. Semin. Mat. Argent., 1 (3) (1929) 1–10.
  • S. Zagorodnyuk: On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle, Constr. Math. Anal., 3 (2) (2020), 75–84.
Yıl 2024, , 1 - 10, 16.12.2024
https://doi.org/10.33205/cma.1502670

Öz

Kaynakça

  • F. Avram, M.S. Taqqu: Noncentral limit theorems and Appell polynomials, Ann. Probab., 15 (1987), 767–775.
  • J. Babini: Polinomios generalizados de Bernoulli y sus correlativos, Rev. Mat. Hisp.-Am., 10 (4) (1935), 23–25.
  • L. Carlitz: A note on Bernoulli and Euler polynomials of the second kind, Scr. Math., 25 (1961), 323–330.
  • L. Carlitz: Degenerate Stirling, Beroulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
  • C. V. L. Charlier: Über die darstellung willkurlicher funktionen, Arkiv för Matematik, Astronomi och Fysik., 25 (3) (1970), 1–11.
  • A.G. Asensi, E. Labarga, E. J.M. Ceniceros and J., Varona: Boole-Dunklpolynomialsandgeneralizations, Rev.RealAcad.Cienc.ExactasFis.Nat.Ser.A-Mat., 118 (2024), Article ID: 16.
  • I. Gavrea, M. Ivan: Approximation properties related to the Bell polynomials, Constr. Math. Anal., 4 (2) (2021), 253–259.
  • R.L. Graham, D.E. Knuth, O: Patashnik, Concrete Mathematics, A Foundation for Computer Science, 2nd ed., AddisonWesley, Reading, MA (1994).
  • C. Jordan: Sur les polynomes analogues aux polynomes de Bernoulli et sur des formules de sommation analogues à celle de MacLaurin-Euler, Acta Szeged, 4 (1929), 130–150.
  • V. Kostov: The disconnectedness of certain sets defined after uni-variate polynomials, Constr. Math. Anal., 5 (3) (2022), 119–133.
  • D.E. Knuth: Two notes on notation, Am. Math. Mon., 99 (1992), 403–422.
  • Korobov: Special polynomials and their applications diophantine approximations, Math. Notes, 2 ( 1996), 77–89.
  • J. Meixner: Orthogonale polynomsysteme mit einem besonderen Gestalt der erzeugenden funktion, J. London Math. Soc., 9 (1934), 6–13.
  • Y. Quintana, W. Ramírez and A. Urieles: Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14 (4) (2020), 583–596.
  • W. Ramírez, D. Bedoya, A. Urieles, C. Cesarano and M. Ortega: New U-Bernoulli, U-Euler and U-Genocchi Polynomials and Their Matrices, Carpathian Math. Publ., 15 (2) (2023), 449–467.
  • J. Rey Pastor: Polinomios correlativos de los de Bernoulli, Bol. Semin. Mat. Argent., 1 (3) (1929) 1–10.
  • S. Zagorodnyuk: On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle, Constr. Math. Anal., 3 (2) (2020), 75–84.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yaklaşım Teorisi ve Asimptotik Yöntemler
Bölüm Makaleler
Yazarlar

Alejandro Urieles 0000-0002-7186-0898

William Ramirez 0000-0003-4675-0221

Clemente Cesarano 0000-0002-1694-7907

Erken Görünüm Tarihi 16 Aralık 2024
Yayımlanma Tarihi 16 Aralık 2024
Gönderilme Tarihi 19 Haziran 2024
Kabul Tarihi 12 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Urieles, A., Ramirez, W., & Cesarano, C. (2024). On discrete orthogonal U-Bernoulli Korobov-type polynomials. Constructive Mathematical Analysis, 7(Special Issue: AT&A), 1-10. https://doi.org/10.33205/cma.1502670
AMA Urieles A, Ramirez W, Cesarano C. On discrete orthogonal U-Bernoulli Korobov-type polynomials. CMA. Aralık 2024;7(Special Issue: AT&A):1-10. doi:10.33205/cma.1502670
Chicago Urieles, Alejandro, William Ramirez, ve Clemente Cesarano. “On Discrete Orthogonal U-Bernoulli Korobov-Type Polynomials”. Constructive Mathematical Analysis 7, sy. Special Issue: AT&A (Aralık 2024): 1-10. https://doi.org/10.33205/cma.1502670.
EndNote Urieles A, Ramirez W, Cesarano C (01 Aralık 2024) On discrete orthogonal U-Bernoulli Korobov-type polynomials. Constructive Mathematical Analysis 7 Special Issue: AT&A 1–10.
IEEE A. Urieles, W. Ramirez, ve C. Cesarano, “On discrete orthogonal U-Bernoulli Korobov-type polynomials”, CMA, c. 7, sy. Special Issue: AT&A, ss. 1–10, 2024, doi: 10.33205/cma.1502670.
ISNAD Urieles, Alejandro vd. “On Discrete Orthogonal U-Bernoulli Korobov-Type Polynomials”. Constructive Mathematical Analysis 7/Special Issue: AT&A (Aralık 2024), 1-10. https://doi.org/10.33205/cma.1502670.
JAMA Urieles A, Ramirez W, Cesarano C. On discrete orthogonal U-Bernoulli Korobov-type polynomials. CMA. 2024;7:1–10.
MLA Urieles, Alejandro vd. “On Discrete Orthogonal U-Bernoulli Korobov-Type Polynomials”. Constructive Mathematical Analysis, c. 7, sy. Special Issue: AT&A, 2024, ss. 1-10, doi:10.33205/cma.1502670.
Vancouver Urieles A, Ramirez W, Cesarano C. On discrete orthogonal U-Bernoulli Korobov-type polynomials. CMA. 2024;7(Special Issue: AT&A):1-10.