Araştırma Makalesi
BibTex RIS Kaynak Göster

Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations

Yıl 2024, , 129 - 141, 16.12.2024
https://doi.org/10.33205/cma.1540457

Öz

In this paper, we consider a linear elliptic operator $E$ with real constant coefficients of order $2m$ in two independent variables without lower order terms. For this equation, we consider linear BVPs in which the boundary operators $T_1,\ldots,T_m$ are of order $m$ and satisfy the Lopatinskii-Shapiro condition with respect to $E$. We prove boundary completeness properties for the system $\{(T_1\omega_k,\ldots, T_m\omega_k)\}$, where $\{\omega_k\}$ is a system of polynomial solutions of the equation $Eu=0$.

Kaynakça

  • S. Agmon: Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane I, Comm. Pure Appl. Math., 10 (1957), 179–239.
  • A. Cialdea: Teoremi di completezza connessi con equazioni ellittiche di ordine superiore in due variabili in un campo con contorno angoloso, Rend. Circ. Mat. Palermo (2), 35 (1) (1986), 32–49.
  • A. Cialdea: A general theory of hypersurface potentials, Ann. Mat. Pura Appl., 168 (1995), 37–61.
  • A. Cialdea: Completeness theorems on the boundary in thermoelasticity, In: Analysis as a life, Trends Math. Birkhäuser/Springer, Cham, (2019), 93–115.
  • G. Fichera: Teoremi di completezza sulla frontiera di un dominio per taluni sistemi di funzioni, Ann. Mat. Pura Appl., 27 (1948), 1–28.
  • G. Fichera: Approssimazione uniforme delle funzioni olomorfe mediante funzioni razionali aventi poli semplici prefissati I & II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 27 (1959), 193–201, 317–323.
  • G. Fichera: Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anistropic inhomogeneous elasticity, In: R.E. Langer (ed.), Partial differential equations and continuum mechanics, Univ. Wisconsin Press, Madison, WI, (1960), 55–80.
  • G. Fichera: The problem of the completeness of systems of particular solutions of partial differential equations, In: Numerical mathematics (Sympos., Inst. Appl. Math., Univ. Hamburg, Hamburg, 1979), Internat. Ser. Numer. Math., vol. 49. Birkhäuser, Basel-Boston, Mass., (1979), 25–41.
  • G. Fichera, L. De Vito: Funzioni analitiche di una variabile complessa, Terza edizione, Libreria Eredi Virgilio Veschi, Rome (1967).
  • G. Fichera, P. E. Ricci: The single layer potential approach in the theory of boundary value problems for elliptic equations, In: Function theoretic methods for partial differential equations (Proc. Internat. Sympos., Darmstadt, 1976), Lecture Notes in Math., vol. Vol. 561. Springer, Berlin-New York, (1976), 39–50.
  • F. Lanzara: A representation theorem for solutions of higher order strongly elliptic systems, In: A. Cialdea (ed.), Homage to Gaetano Fichera, Quad. Mat., vol. 7. Dept. Math., Seconda Univ. Napoli, Caserta, (2000), 233–271.
  • F. Lanzara: On BVPs for strongly elliptic systems with higher order boundary conditions, Georgian Math. J., 14 (1) (2007), 145–167.
  • P. E. Ricci: Sui potenziali di semplice strato per le equazioni ellittiche di ordine superiore in due variabili, Rend. Mat. (6), 7 (1974), 1–39.
  • N. P. Vekua: Systems of singular integral equations, P. Noordhoff Ltd., Groningen (1967).
Yıl 2024, , 129 - 141, 16.12.2024
https://doi.org/10.33205/cma.1540457

Öz

Kaynakça

  • S. Agmon: Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane I, Comm. Pure Appl. Math., 10 (1957), 179–239.
  • A. Cialdea: Teoremi di completezza connessi con equazioni ellittiche di ordine superiore in due variabili in un campo con contorno angoloso, Rend. Circ. Mat. Palermo (2), 35 (1) (1986), 32–49.
  • A. Cialdea: A general theory of hypersurface potentials, Ann. Mat. Pura Appl., 168 (1995), 37–61.
  • A. Cialdea: Completeness theorems on the boundary in thermoelasticity, In: Analysis as a life, Trends Math. Birkhäuser/Springer, Cham, (2019), 93–115.
  • G. Fichera: Teoremi di completezza sulla frontiera di un dominio per taluni sistemi di funzioni, Ann. Mat. Pura Appl., 27 (1948), 1–28.
  • G. Fichera: Approssimazione uniforme delle funzioni olomorfe mediante funzioni razionali aventi poli semplici prefissati I & II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 27 (1959), 193–201, 317–323.
  • G. Fichera: Linear elliptic equations of higher order in two independent variables and singular integral equations, with applications to anistropic inhomogeneous elasticity, In: R.E. Langer (ed.), Partial differential equations and continuum mechanics, Univ. Wisconsin Press, Madison, WI, (1960), 55–80.
  • G. Fichera: The problem of the completeness of systems of particular solutions of partial differential equations, In: Numerical mathematics (Sympos., Inst. Appl. Math., Univ. Hamburg, Hamburg, 1979), Internat. Ser. Numer. Math., vol. 49. Birkhäuser, Basel-Boston, Mass., (1979), 25–41.
  • G. Fichera, L. De Vito: Funzioni analitiche di una variabile complessa, Terza edizione, Libreria Eredi Virgilio Veschi, Rome (1967).
  • G. Fichera, P. E. Ricci: The single layer potential approach in the theory of boundary value problems for elliptic equations, In: Function theoretic methods for partial differential equations (Proc. Internat. Sympos., Darmstadt, 1976), Lecture Notes in Math., vol. Vol. 561. Springer, Berlin-New York, (1976), 39–50.
  • F. Lanzara: A representation theorem for solutions of higher order strongly elliptic systems, In: A. Cialdea (ed.), Homage to Gaetano Fichera, Quad. Mat., vol. 7. Dept. Math., Seconda Univ. Napoli, Caserta, (2000), 233–271.
  • F. Lanzara: On BVPs for strongly elliptic systems with higher order boundary conditions, Georgian Math. J., 14 (1) (2007), 145–167.
  • P. E. Ricci: Sui potenziali di semplice strato per le equazioni ellittiche di ordine superiore in due variabili, Rend. Mat. (6), 7 (1974), 1–39.
  • N. P. Vekua: Systems of singular integral equations, P. Noordhoff Ltd., Groningen (1967).
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yaklaşım Teorisi ve Asimptotik Yöntemler
Bölüm Makaleler
Yazarlar

Alberto Cialdea 0000-0002-0009-5957

Flavia Lanzara 0000-0002-2052-4202

Erken Görünüm Tarihi 16 Aralık 2024
Yayımlanma Tarihi 16 Aralık 2024
Gönderilme Tarihi 29 Ağustos 2024
Kabul Tarihi 13 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Cialdea, A., & Lanzara, F. (2024). Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations. Constructive Mathematical Analysis, 7(Special Issue: AT&A), 129-141. https://doi.org/10.33205/cma.1540457
AMA Cialdea A, Lanzara F. Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations. CMA. Aralık 2024;7(Special Issue: AT&A):129-141. doi:10.33205/cma.1540457
Chicago Cialdea, Alberto, ve Flavia Lanzara. “Completeness Theorems Related to BVPs Satisfying the Lopatinskii Condition for Higher Order Elliptic Equations”. Constructive Mathematical Analysis 7, sy. Special Issue: AT&A (Aralık 2024): 129-41. https://doi.org/10.33205/cma.1540457.
EndNote Cialdea A, Lanzara F (01 Aralık 2024) Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations. Constructive Mathematical Analysis 7 Special Issue: AT&A 129–141.
IEEE A. Cialdea ve F. Lanzara, “Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations”, CMA, c. 7, sy. Special Issue: AT&A, ss. 129–141, 2024, doi: 10.33205/cma.1540457.
ISNAD Cialdea, Alberto - Lanzara, Flavia. “Completeness Theorems Related to BVPs Satisfying the Lopatinskii Condition for Higher Order Elliptic Equations”. Constructive Mathematical Analysis 7/Special Issue: AT&A (Aralık 2024), 129-141. https://doi.org/10.33205/cma.1540457.
JAMA Cialdea A, Lanzara F. Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations. CMA. 2024;7:129–141.
MLA Cialdea, Alberto ve Flavia Lanzara. “Completeness Theorems Related to BVPs Satisfying the Lopatinskii Condition for Higher Order Elliptic Equations”. Constructive Mathematical Analysis, c. 7, sy. Special Issue: AT&A, 2024, ss. 129-41, doi:10.33205/cma.1540457.
Vancouver Cialdea A, Lanzara F. Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations. CMA. 2024;7(Special Issue: AT&A):129-41.