Research Article
BibTex RIS Cite

Upper bounds for the numerical radii of the tensor products of operators

Year 2025, Volume: 8 Issue: 4, 217 - 227, 15.12.2025
https://doi.org/10.33205/cma.1756619

Abstract

In this paper, we develop new upper bounds for the numerical radii of the tensor products of two operators. These inequalities improve and generalize some earlier related inequalities.

References

  • P. Bhunia, K. Paul and A. Sen: Numerical radius inequalities for tensor product of operators, Proc. Indian Acad. Sci. (Math. Sci.), 133 (2023), Article ID: 3.
  • M. L. Buzano: Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. Politech. Torino, 31 (1974), 405–409.
  • S. S. Dragomir: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 5 (18) (2009), 269–278.
  • M. El-Haddad, F. Kittaneh: Numerical radius inequalities for Hilbert space operators, II. Studia Math., 182 (2) (2007), 133–140.
  • M. Guesba: Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators, Boll. Unione Mat. Ital., 14 (4) (2021), 681–692.
  • M. Guesba: On some numerical radius inequalities for normal operators in Hilbert spaces, Interdiscp. Math., 25 (2) (2022), 463–470.
  • M. Guesba, M. Garayev: Estimates for the Berezin number inequalities, J. Pseudo-Differ. Oper. Appl., 15 (2024), Article ID: 43.
  • M. Khosravi, R. Drnovsek and M. S. Moslehian: A commutator approach to buzano’s inequality, Filomat, 26 (4) (2012), 827–832.
  • F. Kittaneh: Notes on some inequalities for Hilbert space operators, Publ. RIMS Kyoto Univ., 24 (1988), 283–293.
  • F. Kittaneh: Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73–80.
  • H. R. Moradi, S. Furuichi, F. C. Mitroi and R. Naseri: An extension of Jensen’s operator inequality and its application to Young inequality, Rev. R. Acad. Cienc. Exact. Fs. Nat. Ser. A Mat., 113 (2019), 605–614.
  • H. R. Moradi, M. Sababheh: New estimates for the numerical radius, Filomat, 35 (2020), 4957–4962.
  • J. Peˇcari´c, T. Furuta, J. Mi´ci´c Hot and Y. Seo: Mond-Peˇcari´c Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monographs in inequalities, Element, Zagreb (2005).
  • B. Simon: Trace ideals and their applications, Cambridge University Press (1979).
There are 14 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Messaoud Guesba 0000-0003-1708-4012

Fuad Kıttaneh 0000-0003-0308-365X

Submission Date August 1, 2025
Acceptance Date December 5, 2025
Early Pub Date December 11, 2025
Publication Date December 15, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Guesba, M., & Kıttaneh, F. (2025). Upper bounds for the numerical radii of the tensor products of operators. Constructive Mathematical Analysis, 8(4), 217-227. https://doi.org/10.33205/cma.1756619
AMA Guesba M, Kıttaneh F. Upper bounds for the numerical radii of the tensor products of operators. CMA. December 2025;8(4):217-227. doi:10.33205/cma.1756619
Chicago Guesba, Messaoud, and Fuad Kıttaneh. “Upper Bounds for the Numerical Radii of the Tensor Products of Operators”. Constructive Mathematical Analysis 8, no. 4 (December 2025): 217-27. https://doi.org/10.33205/cma.1756619.
EndNote Guesba M, Kıttaneh F (December 1, 2025) Upper bounds for the numerical radii of the tensor products of operators. Constructive Mathematical Analysis 8 4 217–227.
IEEE M. Guesba and F. Kıttaneh, “Upper bounds for the numerical radii of the tensor products of operators”, CMA, vol. 8, no. 4, pp. 217–227, 2025, doi: 10.33205/cma.1756619.
ISNAD Guesba, Messaoud - Kıttaneh, Fuad. “Upper Bounds for the Numerical Radii of the Tensor Products of Operators”. Constructive Mathematical Analysis 8/4 (December2025), 217-227. https://doi.org/10.33205/cma.1756619.
JAMA Guesba M, Kıttaneh F. Upper bounds for the numerical radii of the tensor products of operators. CMA. 2025;8:217–227.
MLA Guesba, Messaoud and Fuad Kıttaneh. “Upper Bounds for the Numerical Radii of the Tensor Products of Operators”. Constructive Mathematical Analysis, vol. 8, no. 4, 2025, pp. 217-2, doi:10.33205/cma.1756619.
Vancouver Guesba M, Kıttaneh F. Upper bounds for the numerical radii of the tensor products of operators. CMA. 2025;8(4):217-2.