Upper bounds for the numerical radii of the tensor products of operators
Year 2025,
Volume: 8 Issue: 4, 217 - 227, 15.12.2025
Messaoud Guesba
,
Fuad Kıttaneh
Abstract
In this paper, we develop new upper bounds for the numerical radii of the tensor products of two operators. These inequalities improve and generalize some earlier related inequalities.
References
-
P. Bhunia, K. Paul and A. Sen: Numerical radius inequalities for tensor product of operators, Proc. Indian Acad. Sci. (Math. Sci.), 133 (2023), Article ID: 3.
-
M. L. Buzano: Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. Politech. Torino, 31 (1974), 405–409.
-
S. S. Dragomir: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 5 (18) (2009), 269–278.
-
M. El-Haddad, F. Kittaneh: Numerical radius inequalities for Hilbert space operators, II. Studia Math., 182 (2) (2007), 133–140.
-
M. Guesba: Some generalizations of A-numerical radius inequalities for semi-Hilbert space operators, Boll. Unione Mat. Ital., 14 (4) (2021), 681–692.
-
M. Guesba: On some numerical radius inequalities for normal operators in Hilbert spaces, Interdiscp. Math., 25 (2) (2022), 463–470.
-
M. Guesba, M. Garayev: Estimates for the Berezin number inequalities, J. Pseudo-Differ. Oper. Appl., 15 (2024), Article ID: 43.
-
M. Khosravi, R. Drnovsek and M. S. Moslehian: A commutator approach to buzano’s inequality, Filomat, 26 (4) (2012), 827–832.
-
F. Kittaneh: Notes on some inequalities for Hilbert space operators, Publ. RIMS Kyoto Univ., 24 (1988), 283–293.
-
F. Kittaneh: Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73–80.
-
H. R. Moradi, S. Furuichi, F. C. Mitroi and R. Naseri: An extension of Jensen’s operator inequality and its application to Young inequality, Rev. R. Acad. Cienc. Exact. Fs. Nat. Ser. A Mat., 113 (2019), 605–614.
-
H. R. Moradi, M. Sababheh: New estimates for the numerical radius, Filomat, 35 (2020), 4957–4962.
-
J. Peˇcari´c, T. Furuta, J. Mi´ci´c Hot and Y. Seo: Mond-Peˇcari´c Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monographs in inequalities, Element, Zagreb (2005).
-
B. Simon: Trace ideals and their applications, Cambridge University Press (1979).