On the second boundary value problem for the system of thermoelasticity with microtemperatures
Year 2025,
Volume: 8 Issue: Special Issue: ICCMA, 57 - 67, 16.12.2025
Vita Leonessa
,
Angelica Malaspina
Abstract
In this work, we investigate the second BVP (boundary value problem) associated with the linear equilibrium theory of thermoelasticity with microtemperatures. We obtain a solution of the second BVP in terms of a double-layer thermoelastic potential, unlike the results reported in the literature, where a solution is represented by a single-layer thermoelastic potential.
Project Number
2022SENJZ3
Thanks
The authors acknowledge the support of the Project funded by the European Union - Next Generation EU under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.1 - Call for tender PRIN 2022 No. 104 of February, 2 2022 of Italian Ministry of University and Research; Project code: 2022SENJZ3 (subject area: PE - Physical Sciences and Engineering) “Perturbation problems and asymptotics for elliptic differential equations: variational and potential theoretic methods”.
References
-
M. Aouadi, M. Ciarletta and F. Passarella: Thermoelastic theory with microtemperatures and dissipative thermodynamics, J. Thermal Stresses, 41 (4) (2018), 522–542.
-
M. Basheleishvili, L. Bitsadze and G. Jaiani: On fundamental and singular solutions of the system of the plane thermoelasticity with microtemperatures, Bulletin of TICMI, 15 (2011), 5–12.
-
A. Cialdea: On oblique derivate problem for Laplace equation and connected topics, Rend. Accad. Naz. Sci. XL, Serie 5, Mem. Mat. Parte I, 12 (13) (1988), 181–200.
-
A. Cialdea, E. Dolce, V. Leonessa and A. Malaspina: New integral representations in the linear theory of viscoelastic materials with voids, Publ. Math. Inst., Nouvelle série, 96 (110) (2014), 49–65.
-
A. Cialdea, E. Dolce and A. Malaspina: A complement to potential theory in the Cosserat elasticity, Math. Methods Appl. Sci., 38 (3) (2015), 537–547.
-
A. Cialdea, G.C. Hsiao: Regularization for some boundary integral equations of the first kind in Mechanics, Rend. Accad. Naz. Sci. XL, Serie 5, Mem. Mat. Parte I, 19 (1) (1995), 25–42.
-
A. Cialdea, V. Leonessa and A. Malaspina: Integral representations for solutions of some BVPs for the Lamé system in multiply connected domains, Bound. Value Probl., 2011 (2011), Article ID: 53.
-
A. Cialdea, V. Leonessa and A. Malaspina: The Dirichlet Problem for Second-Order Divergence Form Elliptic Operators with Variable Coefficients: The Simple Layer Potential Ansatz, Abstr. Appl. Anal., 2015 (2015), Article ID: 276810.
-
A. Cialdea , V. Leonessa and A. Malaspina: On the double layer potential ansatz for the n-dimensional Helmholtz equation with Neumann condition, Electron. J. Qual. Theory Differ. Equ., 2020, (2020), Article ID: 71.
-
A. Cialdea, V. Leonessa and A. Malaspina: On the traction problem for steady elastic oscillations equations: the double layer potential ansatz, Rend. Circ. Mat. Palermo, II. Ser., 72 (3) (2023), 1947–1960.
-
S. Chirita, M. Ciarletta and C. D’Apice: On the theory of thermoelasticity with microtemperatures, J. Math. Anal. Appl., 397 (1) (2013), 349–361.
-
M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino: Singularly perturbed boundary value problems–a functional analytic approach, Springer, Cham (2021).
-
G. Fichera: Una introduzione alla teoria delle equazioni integrali singolari, Rend. Mat., 17 (1958), 82–191.
-
G. Fichera: Spazi lineari di k-misure e di forme differenziali, in Proc. of Intern. Symposium on Linear Spaces, Jerusalem 1960, Israel Ac. of Sciences and Humanities, Pergamon Press, (1961), 175–226.
-
H. Flanders: Differential Forms with Applications to the Physical Sciences, Academic Press, New York, San Francisco, London (1963).
-
S. Gupta, R. Dutta, S. Das and A. K. Verma: Double poromagneto-thermoelastic model with microtemperatures and initial stress under memory-dependent heat transfer, J. Thermal Stresses, 46 (8) (2023), 743–774.
-
D. Ie¸san: On a theory of micromorphic elastic solids with microtemperatures, J. Thermal Stresses, 24 (2001), 737–752.
-
D. Ie¸san: On the theory of heat conduction in micromorphic continua, Internat. J. Engrg. Sci., 40 (2002), 1859–1878.
-
D. Ie¸san: Thermoelasticity of bodies with microstructure and microtemperatures, Internat. J. Solids Structures, 44 (2007), 8648–8662.
-
D. Iesan, R. Quintanilla: On the Theory of Thermoelasticity with Microtemperatures, J. Thermal Stresses, 23 (2000), 199–215.
-
D. Ie¸san, R. Quintanilla: On thermoelastic bodies with inner structure and microtemperatures, J. Math. Anal. Appl., 354 (2009), 12–23.
-
T. Kansal: The Theory of Thermoelasticity with Double Porosity and Microtemperatures, CMST, 28 (3) (2022), 87–107.
-
V. Leonessa, A. Malaspina: On the Dirichlet Problem for the System of Thermoelasticity with Microtemperatures, Mediterr. J. Math., 22 (2025), Article ID: 95.
-
L. Liverani, R. Quintanilla: Thermoelasticity with temperature and microtemperatures with fading memory, Math. Mech. Solids, 28 (5) (2022), 1255–1273.
-
S. G. Mikhlin, S. Prössdorf: Singular integral operators, Springer-Verlag, Berlin (1986).
-
A. Scalia, M. Svanadze: Potential method in the linear theory of thermoelasticity with microtemperatures, J. Thermal Stresses, 32 (10) (2009), 1024–1042.
-
A. Scalia, M. Svanadze and R. Tracinà: Basic Theorems in the Equilibrium Theory of Thermoelasticity with Microtemperatures, J. Thermal Stresses, 33 (8) (2010), 721–753.
-
M. Svanadze: Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures, J. Thermal Stresses, 27 (2) (2004), 151–170.
-
M. Svanadze: On the Linear Theory of Thermoelasticity with Microtemperatures, Tech. Mech., 32 (2–5), (2012), 564–576.
-
M. Svanadze: Potential method in the linear theory of triple porosity thermoelasticity, J. Math. Anal. Appl., 461 (2) (2018), 1585–1605.