Araştırma Makalesi
BibTex RIS Kaynak Göster

Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves

Yıl 2019, , 153 - 167, 01.12.2019
https://doi.org/10.33205/cma.594066

Öz

In this paper we introduce the generalized exponential sampling series of bivariate functions and establish some pointwise and uniform convergence results, also in a quantitative form. Moreover, we study the pointwise asymptotic behaviour of the series. One of the basic tools is the Mellin--Taylor formula for bivariate functions, here introduced. A practical application to seismic waves is also outlined.

Destekleyen Kurum

Università di Perugia, Fondazione Cassa di Risparmio di Perugia (CRP)

Proje Numarası

Università di Perugia Project "Ricerca di Base 2017"; Project Fondazione Cassa di Risparmio di Perugia, cod. nr. 2018.0419.021

Teşekkür

Gruppo Nazionale per l'Analisi Matematica e Applicazioni (GNAMPA) INDAM

Kaynakça

  • [1] L. Angeloni, D. Costarelli, G. Vinti, A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math., 43(2), (2018), 755–767.
  • [2] L. Angeloni, G. Vinti, Discrete operators of sampling type and approximation in '-variation, Math. Nachr., 291(4), (2018), 546–555.
  • [3] C. Bardaro, P.L. Butzer, I. Mantellini, The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting, Sampling Theory in Signal and Image Process., 13(1), (2014), 35–66.
  • [4] C. Bardaro, P.L. Butzer, I. Mantellini, G. Schmeisser, On the Paley–Wiener theorem in the Mellin transform setting, J. Approx. Theory, 207, (2016), 60–75.
  • [5] C. Bardaro, P.L. Butzer, I. Mantellini, G. Schmeisser, A fresh approach to the Paley–Wiener theorem for Mellin transforms and the Mellin–Hardy spaces, Math. Nachr., 290, (2017), 2759–2774.
  • [6] C. Bardaro, P.L. Butzer, R.L. Stens, G. Vinti, Prediction by samples from the past with error estimates covering discontinuous signals, IEEE Trans. Information Theory, 56(1), (2010), 614–633.
  • [7] C. Bardaro, L. Faina, I. Mantellini, A generalization of the exponential sampling series and its approximation properties, Math. Slovaca, 67(6), (2017), 1481–1496.
  • [8] C. Bardaro, I. Mantellini, A note on the Voronovskaja theorem for Mellin–Fejer convolution operators, Appl. Math. Lett., 24, (2011), 2064–2067.
  • [9] C. Bardaro, I. Mantellini, Asymptotic behaviour of Mellin–Fejer convolution operators, East J. Approx., 17(2), (2011), 181–201.
  • [10] C. Bardaro, I. Mantellini, G. Schmeisser, Exponential sampling series: convergence in Mellin–Lebesgue spaces, Results Math., 74, (2019), Art. 119.
  • [11] M. Bertero, E.R. Pike, Exponential sampling method for Laplace and other dilationally invariant transforms I. Singularsystem analysis. II. Examples in photon correction spectroscopy and Frauenhofer diffraction, Inverse Problems, 7, (1991), 1–20; 21–41. Bivariate generalized exponential sampling series and applications to seismic waves 167
  • [12] A. Bobbio, M. Vassallo, G. Festa, Local Magnitude estimation for the Irpinia Seismic Network, Bull. Seismol. Soc. Am., 99, (2009), 2461–2470.
  • [13] P.L. Butzer, S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3, (1997), 325–375.
  • [14] P.L. Butzer, S. Jansche, The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, Suppl. Vol. 46, (special issue dedicated to Professor Calogero Vint) (1998), 99–122.
  • [15] P.L. Butzer, R.L. Stens, Prediction of non-bandlimited signals in terms of splines of low degree, Math. Nachr., 132, (1987), 115–130.
  • [16] P.L. Butzer, R.L. Stens, Linear prediction by samples from the past. In: R.J. Marks II (ed.) Advanced Topics in Shannon Sampling and Interpolation Theory,Springer, New York, (1993), 157–183.
  • [17] D. Casasent (Ed), Optical data processing, Springer, Berlin, (1978), 241–282.
  • [18] F. Gori, Sampling in optics In: R.J. Marks II (ed.), Advances Topics in Shannon Sampling and Interpolation Theory, Springer, New York, (1993), 37–83.
  • [19] B. Gutenberg, C. F. Richter, Discussion: Magnitude and energy of earthquakes, Science, 83, 2147, (1936), 183–185.
  • [20] J.R. Higgins, Sampling theory in Fourier and signal analysis, Foundations, Oxford Univ. Press., Oxford, (1996).
  • [21] A. Kivinukk, G. Tamberg, On window methods in generalized Shannon sampling operators. In: G. Schmeisser and A. Zayed (Eds) New perspectives on approximation and sampling theory, 63–85, Appl. Numer. Harmon. Anal., Birkhaeuser Springer, Cham, (2014).
  • [22] R.G. Mamedov, The Mellin transform and approximation theory (in Russian), "Elm", Baku, (1991).
  • [23] N. Ostrowsky, D. Sornette, P. Parker, E.R. Pike, Exponential sampling method for light scattering polydispersity analysis, Opt. Acta, 28, (1994), 1059–1070.
  • [24] C. F. Richte, An instrumental earthquake magnitude scale, Bull. Seismol. Soc. Am., 25, (1935), 1–32.
  • [25] L.L. Schumaker, Spline functions: basic theory, John Wiley and Sons, New York, (1981).
  • [26] E.Weber, V. Convertito, G. Iannaccone, A. Zollo, A. Bobbio, L. Cantore, M. Corciulo, M. Di Crosta, L. Elia, C. Martino, A. Romeo, C. Satriano, An advanced seismic network in the southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning Seism. Res. Lett., 78, (2007), 622–534.
  • [27] A.I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton (1993).
Yıl 2019, , 153 - 167, 01.12.2019
https://doi.org/10.33205/cma.594066

Öz

Proje Numarası

Università di Perugia Project "Ricerca di Base 2017"; Project Fondazione Cassa di Risparmio di Perugia, cod. nr. 2018.0419.021

Kaynakça

  • [1] L. Angeloni, D. Costarelli, G. Vinti, A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math., 43(2), (2018), 755–767.
  • [2] L. Angeloni, G. Vinti, Discrete operators of sampling type and approximation in '-variation, Math. Nachr., 291(4), (2018), 546–555.
  • [3] C. Bardaro, P.L. Butzer, I. Mantellini, The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting, Sampling Theory in Signal and Image Process., 13(1), (2014), 35–66.
  • [4] C. Bardaro, P.L. Butzer, I. Mantellini, G. Schmeisser, On the Paley–Wiener theorem in the Mellin transform setting, J. Approx. Theory, 207, (2016), 60–75.
  • [5] C. Bardaro, P.L. Butzer, I. Mantellini, G. Schmeisser, A fresh approach to the Paley–Wiener theorem for Mellin transforms and the Mellin–Hardy spaces, Math. Nachr., 290, (2017), 2759–2774.
  • [6] C. Bardaro, P.L. Butzer, R.L. Stens, G. Vinti, Prediction by samples from the past with error estimates covering discontinuous signals, IEEE Trans. Information Theory, 56(1), (2010), 614–633.
  • [7] C. Bardaro, L. Faina, I. Mantellini, A generalization of the exponential sampling series and its approximation properties, Math. Slovaca, 67(6), (2017), 1481–1496.
  • [8] C. Bardaro, I. Mantellini, A note on the Voronovskaja theorem for Mellin–Fejer convolution operators, Appl. Math. Lett., 24, (2011), 2064–2067.
  • [9] C. Bardaro, I. Mantellini, Asymptotic behaviour of Mellin–Fejer convolution operators, East J. Approx., 17(2), (2011), 181–201.
  • [10] C. Bardaro, I. Mantellini, G. Schmeisser, Exponential sampling series: convergence in Mellin–Lebesgue spaces, Results Math., 74, (2019), Art. 119.
  • [11] M. Bertero, E.R. Pike, Exponential sampling method for Laplace and other dilationally invariant transforms I. Singularsystem analysis. II. Examples in photon correction spectroscopy and Frauenhofer diffraction, Inverse Problems, 7, (1991), 1–20; 21–41. Bivariate generalized exponential sampling series and applications to seismic waves 167
  • [12] A. Bobbio, M. Vassallo, G. Festa, Local Magnitude estimation for the Irpinia Seismic Network, Bull. Seismol. Soc. Am., 99, (2009), 2461–2470.
  • [13] P.L. Butzer, S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3, (1997), 325–375.
  • [14] P.L. Butzer, S. Jansche, The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, Suppl. Vol. 46, (special issue dedicated to Professor Calogero Vint) (1998), 99–122.
  • [15] P.L. Butzer, R.L. Stens, Prediction of non-bandlimited signals in terms of splines of low degree, Math. Nachr., 132, (1987), 115–130.
  • [16] P.L. Butzer, R.L. Stens, Linear prediction by samples from the past. In: R.J. Marks II (ed.) Advanced Topics in Shannon Sampling and Interpolation Theory,Springer, New York, (1993), 157–183.
  • [17] D. Casasent (Ed), Optical data processing, Springer, Berlin, (1978), 241–282.
  • [18] F. Gori, Sampling in optics In: R.J. Marks II (ed.), Advances Topics in Shannon Sampling and Interpolation Theory, Springer, New York, (1993), 37–83.
  • [19] B. Gutenberg, C. F. Richter, Discussion: Magnitude and energy of earthquakes, Science, 83, 2147, (1936), 183–185.
  • [20] J.R. Higgins, Sampling theory in Fourier and signal analysis, Foundations, Oxford Univ. Press., Oxford, (1996).
  • [21] A. Kivinukk, G. Tamberg, On window methods in generalized Shannon sampling operators. In: G. Schmeisser and A. Zayed (Eds) New perspectives on approximation and sampling theory, 63–85, Appl. Numer. Harmon. Anal., Birkhaeuser Springer, Cham, (2014).
  • [22] R.G. Mamedov, The Mellin transform and approximation theory (in Russian), "Elm", Baku, (1991).
  • [23] N. Ostrowsky, D. Sornette, P. Parker, E.R. Pike, Exponential sampling method for light scattering polydispersity analysis, Opt. Acta, 28, (1994), 1059–1070.
  • [24] C. F. Richte, An instrumental earthquake magnitude scale, Bull. Seismol. Soc. Am., 25, (1935), 1–32.
  • [25] L.L. Schumaker, Spline functions: basic theory, John Wiley and Sons, New York, (1981).
  • [26] E.Weber, V. Convertito, G. Iannaccone, A. Zollo, A. Bobbio, L. Cantore, M. Corciulo, M. Di Crosta, L. Elia, C. Martino, A. Romeo, C. Satriano, An advanced seismic network in the southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning Seism. Res. Lett., 78, (2007), 622–534.
  • [27] A.I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton (1993).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Carlo Bardaro

Giada Bevıgnanı Bu kişi benim

Ilaria Mantellını Bu kişi benim

Marco Seracını Bu kişi benim

Proje Numarası Università di Perugia Project "Ricerca di Base 2017"; Project Fondazione Cassa di Risparmio di Perugia, cod. nr. 2018.0419.021
Yayımlanma Tarihi 1 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Bardaro, C., Bevıgnanı, G., Mantellını, I., Seracını, M. (2019). Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves. Constructive Mathematical Analysis, 2(4), 153-167. https://doi.org/10.33205/cma.594066
AMA Bardaro C, Bevıgnanı G, Mantellını I, Seracını M. Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves. CMA. Aralık 2019;2(4):153-167. doi:10.33205/cma.594066
Chicago Bardaro, Carlo, Giada Bevıgnanı, Ilaria Mantellını, ve Marco Seracını. “Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves”. Constructive Mathematical Analysis 2, sy. 4 (Aralık 2019): 153-67. https://doi.org/10.33205/cma.594066.
EndNote Bardaro C, Bevıgnanı G, Mantellını I, Seracını M (01 Aralık 2019) Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves. Constructive Mathematical Analysis 2 4 153–167.
IEEE C. Bardaro, G. Bevıgnanı, I. Mantellını, ve M. Seracını, “Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves”, CMA, c. 2, sy. 4, ss. 153–167, 2019, doi: 10.33205/cma.594066.
ISNAD Bardaro, Carlo vd. “Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves”. Constructive Mathematical Analysis 2/4 (Aralık 2019), 153-167. https://doi.org/10.33205/cma.594066.
JAMA Bardaro C, Bevıgnanı G, Mantellını I, Seracını M. Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves. CMA. 2019;2:153–167.
MLA Bardaro, Carlo vd. “Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves”. Constructive Mathematical Analysis, c. 2, sy. 4, 2019, ss. 153-67, doi:10.33205/cma.594066.
Vancouver Bardaro C, Bevıgnanı G, Mantellını I, Seracını M. Bivariate Generalized Exponential Sampling Series and Applications to Seismic Waves. CMA. 2019;2(4):153-67.