[1] T. Acar, A. Aral, H. Gonska: On Szász-Mirakyan operators preserving $e^{2ax}$, $a>0$, a > 0. Mediterr. J. Math. 14 (1) (2017),
Art. 6, 14 pp.
[2] T. Acar, A. Aral, D. Cárdenas-Morales, P. Garrancho: Szász-Mirakyan type operators which fix exponentials. Results
Math. 72 (2) (2017), no. 3, 1393-1404.
[3] A. Aral, D. Cárdenas-Morales, P. Garrancho: Bernstein-type operators that reproduce exponential functions. J. Math.
Inequal.(Accepted).
[4] M. Birou: A note about some general King-type operators. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity,
12 (2014), 3-16.
[5] P. I. Braica, L. I. Pi¸scoran, A. Indrea: Grafical structure of some King type operators. Acta Universitatis Apulensis. 34
(2013), 163-171.
[6] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado: Shape preserving approximation by Bernstein-type operators
which fix polynomials. Appl. Math. and Comput. 182 (2) (2006), 1615-1622.
[7] D. Cárdenas-Morales, P. Garrancho, I. Ra¸sa: Approximation properties of Bernstein-Durrmeyer type operators. Appl.
Math. Comput., 232 (2014), pp. 1-8.
[8] E. Deniz, A. Aral, V. Gupta: Note on Szász-Mirakyan-Durrmeyer operators preserving $e^{2ax}$, $a>0$. Numer. Funct.
Anal. Optim. 39 (2) (2018), 201-207.
[9] O. Duman, M. A. Özarslan: Szász- Mirakyan type operators providing a better error estimation. Appl. Math. Lett. 20
(2007) 1184-1188.
[10] A. D. Gadziev: Theorems of the type of P. P. Korovkin’s theorems. Mat Zametki 20 (5), (1976), 781–786.
[11] V. Gupta, G.S. Srivastava: Simultaneous approximation by Baskakov-Szász type operators. Bull. Math. Soc. Sci. 37 (85)
(1993), 73–85.
[12] V. Gupta, A. M. Acu: On Baskakov-Szász-Mirakyan type operators preserving exponential type functions. Positivity. pp
1-11, doi:10.1007/s11117-018-0553-x.
[13] V. Gupta, A. Aral: A note on Szász-Mirakyan-Kantorovich type operators preserving $e^{-x}$. Positivity. 22, pp 415-423,
doi:10.1007/s11117-017-0518-5.
[14] V. Gupta, G. Tachev: On approximation properties of Phillips operators preserving exponential functions. Mediterr. J.
Math. 14 (4) (2017), Art. 177, pp. 12.
[15] A. Holho¸s: The rate of approximation of functions in an infinite interval by positive linear operators. Studia Univ. Babes-
Bolyai Mathematica. 55 (2) (2010), pp. 133-142.
[16] J. P. King: Positive linear operators which preserve $x^{2}$. Acta Math. Hungar. 99 (3) (2003) 203-208.
[17] V. N. Mishra, M. Mursaleen, P. Sharma: Some approximation properties of Baskakov-Szász- Stancu operators. Appl.
Math. Inf. Sci. 9 (6) (2015), 3159-3167.
[18] Ö. G. Yılmaz, A. Aral, F. Ta¸sdelen Ye¸sildal: On Szász-Mirakyan type operators preserving polynomials. J. Numer. Anal.
Approx. Theory 46 (1) (2017), 93-106.
[19] Ö. G. Yılmaz, V. Gupta, A. Aral: On Baskakov operators preserving the exponential function. J. Numer. Anal. Approx.
Theory 46 (2) (2017), 150-161.
Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions
The purpose of this paper is to construct a general class of operators which has known Baskakov-Szász-Stancu that preserving constant and $e^{2ax}, a>0$ functions. We scrutinize a uniform convergence result and analyze the asymptotic behavior of our operators, as well. Finally, we discuss the convergence of corresponding sequences in exponential weighted spaces and make a comparison about which one approximates better between classical Baskakov-Szász-Stancu operators and the recent operators.
[1] T. Acar, A. Aral, H. Gonska: On Szász-Mirakyan operators preserving $e^{2ax}$, $a>0$, a > 0. Mediterr. J. Math. 14 (1) (2017),
Art. 6, 14 pp.
[2] T. Acar, A. Aral, D. Cárdenas-Morales, P. Garrancho: Szász-Mirakyan type operators which fix exponentials. Results
Math. 72 (2) (2017), no. 3, 1393-1404.
[3] A. Aral, D. Cárdenas-Morales, P. Garrancho: Bernstein-type operators that reproduce exponential functions. J. Math.
Inequal.(Accepted).
[4] M. Birou: A note about some general King-type operators. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity,
12 (2014), 3-16.
[5] P. I. Braica, L. I. Pi¸scoran, A. Indrea: Grafical structure of some King type operators. Acta Universitatis Apulensis. 34
(2013), 163-171.
[6] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado: Shape preserving approximation by Bernstein-type operators
which fix polynomials. Appl. Math. and Comput. 182 (2) (2006), 1615-1622.
[7] D. Cárdenas-Morales, P. Garrancho, I. Ra¸sa: Approximation properties of Bernstein-Durrmeyer type operators. Appl.
Math. Comput., 232 (2014), pp. 1-8.
[8] E. Deniz, A. Aral, V. Gupta: Note on Szász-Mirakyan-Durrmeyer operators preserving $e^{2ax}$, $a>0$. Numer. Funct.
Anal. Optim. 39 (2) (2018), 201-207.
[9] O. Duman, M. A. Özarslan: Szász- Mirakyan type operators providing a better error estimation. Appl. Math. Lett. 20
(2007) 1184-1188.
[10] A. D. Gadziev: Theorems of the type of P. P. Korovkin’s theorems. Mat Zametki 20 (5), (1976), 781–786.
[11] V. Gupta, G.S. Srivastava: Simultaneous approximation by Baskakov-Szász type operators. Bull. Math. Soc. Sci. 37 (85)
(1993), 73–85.
[12] V. Gupta, A. M. Acu: On Baskakov-Szász-Mirakyan type operators preserving exponential type functions. Positivity. pp
1-11, doi:10.1007/s11117-018-0553-x.
[13] V. Gupta, A. Aral: A note on Szász-Mirakyan-Kantorovich type operators preserving $e^{-x}$. Positivity. 22, pp 415-423,
doi:10.1007/s11117-017-0518-5.
[14] V. Gupta, G. Tachev: On approximation properties of Phillips operators preserving exponential functions. Mediterr. J.
Math. 14 (4) (2017), Art. 177, pp. 12.
[15] A. Holho¸s: The rate of approximation of functions in an infinite interval by positive linear operators. Studia Univ. Babes-
Bolyai Mathematica. 55 (2) (2010), pp. 133-142.
[16] J. P. King: Positive linear operators which preserve $x^{2}$. Acta Math. Hungar. 99 (3) (2003) 203-208.
[17] V. N. Mishra, M. Mursaleen, P. Sharma: Some approximation properties of Baskakov-Szász- Stancu operators. Appl.
Math. Inf. Sci. 9 (6) (2015), 3159-3167.
[18] Ö. G. Yılmaz, A. Aral, F. Ta¸sdelen Ye¸sildal: On Szász-Mirakyan type operators preserving polynomials. J. Numer. Anal.
Approx. Theory 46 (1) (2017), 93-106.
[19] Ö. G. Yılmaz, V. Gupta, A. Aral: On Baskakov operators preserving the exponential function. J. Numer. Anal. Approx.
Theory 46 (2) (2017), 150-161.
Bodur, M., Gürel Yılmaz, Ö., & Aral, A. (2018). Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions. Constructive Mathematical Analysis, 1(1), 1-8. https://doi.org/10.33205/cma.450708
AMA
Bodur M, Gürel Yılmaz Ö, Aral A. Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions. CMA. September 2018;1(1):1-8. doi:10.33205/cma.450708
Chicago
Bodur, Murat, Övgü Gürel Yılmaz, and Ali Aral. “Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions”. Constructive Mathematical Analysis 1, no. 1 (September 2018): 1-8. https://doi.org/10.33205/cma.450708.
EndNote
Bodur M, Gürel Yılmaz Ö, Aral A (September 1, 2018) Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions. Constructive Mathematical Analysis 1 1 1–8.
IEEE
M. Bodur, Ö. Gürel Yılmaz, and A. Aral, “Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions”, CMA, vol. 1, no. 1, pp. 1–8, 2018, doi: 10.33205/cma.450708.
ISNAD
Bodur, Murat et al. “Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions”. Constructive Mathematical Analysis 1/1 (September 2018), 1-8. https://doi.org/10.33205/cma.450708.
JAMA
Bodur M, Gürel Yılmaz Ö, Aral A. Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions. CMA. 2018;1:1–8.
MLA
Bodur, Murat et al. “Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions”. Constructive Mathematical Analysis, vol. 1, no. 1, 2018, pp. 1-8, doi:10.33205/cma.450708.
Vancouver
Bodur M, Gürel Yılmaz Ö, Aral A. Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions. CMA. 2018;1(1):1-8.