Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 1 Sayı: 2, 73 - 87, 07.11.2018
https://doi.org/10.33205/cma.442151

Öz

Kaynakça

  • [1] Acu, A. M., Properties and applications of Pn-simple functionals, Positivity, 21 (2017), No. 1, 283–297
  • [2] Abel, U. and Ivan, M., New representation of the remainder in the Bernstein approximation, J. Math. Anal. Appl., 381 (2011), No. 2, 952–956
  • [3] Agratini, O., Approximation by linear operators (in Romanian), Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2000
  • [4] Arama, O., Propriet˘a¸ti privind monotonia ¸sirului polinoamelor de interpolare ale lui S. N. Bernstein ¸si aplicarea lor la studiul aproxim˘arii func¸tiilor , Studii ¸si Cerc. Mat., 8 (1957), 195–210
  • [5] Barbosu, D., Aproximarea func¸tiilor de mai multe variabile prin sume booleene de operatori liniari de tip interpolator, Ed. Risoprint, Cluj-Napoca, 2002 (in Romanian)
  • [6] Barbosu, D., Schurer-Stancu type operators, Studia Univ. "Babe¸s-Bolyai" Math., 48 (2003), No. 3, 31–35
  • [7] Barbosu, D., Bivariate operators of Schurer-Stancu type, An. ¸Stiin¸t. Univ. Ovidius Constan¸ta Ser. Mat., 11 (2003), No. 1, 1–8
  • [8] Barbosu, D., GBS operators of Schurer-Stancu type, An. Univ. Craiova Ser. Mat. Inform., 30 (2003), No. 2, 34–39
  • [9] Barbosu, D., Polynomial approximation by means of Schurer-Stancu type operators, Ed. Univ. de Nord, Baia Mare, 2006
  • [10] Barbosu, D., Two dimensional divided differences revisited, Creat. Math. Inform., 17 (2008), 1–7
  • [11] Barbosu, D. and Pop, O. T., A note on the GBS Bernstein’s approximation formula, An. Univ. Craiova Ser. Mat. Inform., 35 (2008), 1–6
  • [12] Barbosu, D. and Pop, O. T., On the Bernstein bivariate approximation formula , Carpathian J. Math., 24 (2008), No. 3, 293–298
  • [13] Barbosu, D. and Pop, O. T., Bivariate Schurer-Stancu operators revisited, Carpathian J. Math., 26 (2010), No. 1, 24–35
  • [14] Barbosu, D., On the monotonicity of Schurer-Stancu’s polynomials, Automat. Comput. Appl. Math., 15 (2006), No. 1, 27–35 (2007) [15] Barbosu, D. and Micl˘au¸s, D., On the Stancu operators and their applications, Creat. Math. Inform., 26 (2017), No. 1, 29–36
  • [16] Barbosu, D., On the approximation of convex functions using linear positive operators, Creat. Math. Inform., 26 (2017), No. 2, 137–143
  • [17] Barbosu, D., On the monotonicity of bivariate Bernstein polynomials, Creat. Math. Inform., 27 (2018), No. 1, 9–14
  • [18] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow, 13 (1912-1913), No. 2, 1–2
  • [19] Gupta, V., Differences of Operators of Lupa¸s Type, Constructive Mathematical Analysis 1 (1) (2018), 9–14
  • [20] Della Vecchia, B., On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babe¸s- Bolyai, Mathematica, 37 (1992), No. 1, 3–36
  • [21] Delvos, F. J. and Schempp, W., Boolean methods in interpolation and approximation, Pitman Research Notes in Math., Series 230, New York, 1989
  • [22] Ionescu, D. V., Divided differences (in Romanian), Ed. Acad. R.S.R., Bucure¸sti, 1978
  • [23] Ivan, M., Elements of Interpolation Theory, Mediamira Science Publisher, Cluj-Napoca (2004), 61-68
  • [24] Miclau¸s, D., The revision of some results for Bernstein-Stancu type operators, Carpathian J. Math., 28 (2012), No. 2, 289–300
  • [25] Miclau¸s, D., On the GBS Bernstein-Stancu’s type operators, Creat. Math. Inform., 22 (2013), No. 1, 73–80
  • [26] Miclau¸s, D., On the monotonicity property for the sequence of Stancu type polynomials, An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.), 62 (2016), No. 1, 141–149
  • [27] Miclau¸s, D., On the Stancu type bivariate approximation formula, Carpathian J. Math., 32 (2016), No. 1, 103–111
  • [28] Muraru, C., On the monotonicity of Schurer type polynomials, Carpathian J. Math., 21 (2005), No. 1-2, 89–94
  • [29] Pop, O. T. and Barbosu, D., Two dimensional divided differences with multiple knots, An. ¸Stiin¸t. Univ. "Ovidius” Constan ta Ser. Mat.,17 (2009), No. 2, 181–190
  • [30] Popoviciu, T., Sur quelques proprietes des fonctions d’une ou deux variables réelles, Mathematica (1934), 1–85
  • [31] Popoviciu, T., Introduction à la théorie des différences divisées, (French) Bull. Math. Soc. Roumaine Sci., 42 (1940), No. 1, 65–78
  • [32] Rockafeller, R. T. Convex Analysis, Ed. Theta, Bucharest, 1992 ( in Romanian, translated by Ingrid and Daniel Belti¸ta)
  • [33] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Tech. Univ Delft Report, 1962
  • [34] Stancu, D. D., Some Bernstein poiynomials in two variables and their applications,Soviet Math. Dokl., 1 (1961), 1025– 1028
  • [35] Stancu, D. D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal., 1 (1964), 137–163
  • [36] Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, rev. Roum. Math. Pures et Appl., 13 (1968), No. 8, 1173–1194
  • [37] Stancu, D. D., Asupra unei generalizari a polinoamelor lui Bernstein (Romanian), Studia Univ. "Babe¸s-Bolyai", Ser. Mathematica-Physica, (1969), No. 2, 31–45
  • [38] Stancu, D. D. On the remainder of approximation of functions by means of a parameter-dependent linear polynomial operator, Studia Univ. Babe¸s-Bolyai Ser. Math.-Mech., 16 (1971), No. 2, 59–66
  • [39] Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernstein polynomials, Calcolo 16 (1979), No. 4, 431–445 (1980)
  • [40] Stancu, D. D., Coman, Gh., Agratini, O. and Trâmbi¸ta¸s, R., Analiza numerica ¸si teoria aproximarii, vol. I, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2001 (in Romanian)

On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators

Yıl 2018, Cilt: 1 Sayı: 2, 73 - 87, 07.11.2018
https://doi.org/10.33205/cma.442151

Öz

The paper is a survey concerning representations for the remainder term of Bernstein-Schurer-Stancu and respectively Stancu (based on factorial powers) bivariate approximation formulas, using bivariate divided differences. As particular cases the remainder terms of bivariate Bernstein-Stancu, Schurer and classical Bernstein bivariate approximation formulas are obtained. Finally, one presents some mean value properties, similar to those of the remainder term of classical Bernstein univariate approximation formula.

Kaynakça

  • [1] Acu, A. M., Properties and applications of Pn-simple functionals, Positivity, 21 (2017), No. 1, 283–297
  • [2] Abel, U. and Ivan, M., New representation of the remainder in the Bernstein approximation, J. Math. Anal. Appl., 381 (2011), No. 2, 952–956
  • [3] Agratini, O., Approximation by linear operators (in Romanian), Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2000
  • [4] Arama, O., Propriet˘a¸ti privind monotonia ¸sirului polinoamelor de interpolare ale lui S. N. Bernstein ¸si aplicarea lor la studiul aproxim˘arii func¸tiilor , Studii ¸si Cerc. Mat., 8 (1957), 195–210
  • [5] Barbosu, D., Aproximarea func¸tiilor de mai multe variabile prin sume booleene de operatori liniari de tip interpolator, Ed. Risoprint, Cluj-Napoca, 2002 (in Romanian)
  • [6] Barbosu, D., Schurer-Stancu type operators, Studia Univ. "Babe¸s-Bolyai" Math., 48 (2003), No. 3, 31–35
  • [7] Barbosu, D., Bivariate operators of Schurer-Stancu type, An. ¸Stiin¸t. Univ. Ovidius Constan¸ta Ser. Mat., 11 (2003), No. 1, 1–8
  • [8] Barbosu, D., GBS operators of Schurer-Stancu type, An. Univ. Craiova Ser. Mat. Inform., 30 (2003), No. 2, 34–39
  • [9] Barbosu, D., Polynomial approximation by means of Schurer-Stancu type operators, Ed. Univ. de Nord, Baia Mare, 2006
  • [10] Barbosu, D., Two dimensional divided differences revisited, Creat. Math. Inform., 17 (2008), 1–7
  • [11] Barbosu, D. and Pop, O. T., A note on the GBS Bernstein’s approximation formula, An. Univ. Craiova Ser. Mat. Inform., 35 (2008), 1–6
  • [12] Barbosu, D. and Pop, O. T., On the Bernstein bivariate approximation formula , Carpathian J. Math., 24 (2008), No. 3, 293–298
  • [13] Barbosu, D. and Pop, O. T., Bivariate Schurer-Stancu operators revisited, Carpathian J. Math., 26 (2010), No. 1, 24–35
  • [14] Barbosu, D., On the monotonicity of Schurer-Stancu’s polynomials, Automat. Comput. Appl. Math., 15 (2006), No. 1, 27–35 (2007) [15] Barbosu, D. and Micl˘au¸s, D., On the Stancu operators and their applications, Creat. Math. Inform., 26 (2017), No. 1, 29–36
  • [16] Barbosu, D., On the approximation of convex functions using linear positive operators, Creat. Math. Inform., 26 (2017), No. 2, 137–143
  • [17] Barbosu, D., On the monotonicity of bivariate Bernstein polynomials, Creat. Math. Inform., 27 (2018), No. 1, 9–14
  • [18] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow, 13 (1912-1913), No. 2, 1–2
  • [19] Gupta, V., Differences of Operators of Lupa¸s Type, Constructive Mathematical Analysis 1 (1) (2018), 9–14
  • [20] Della Vecchia, B., On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babe¸s- Bolyai, Mathematica, 37 (1992), No. 1, 3–36
  • [21] Delvos, F. J. and Schempp, W., Boolean methods in interpolation and approximation, Pitman Research Notes in Math., Series 230, New York, 1989
  • [22] Ionescu, D. V., Divided differences (in Romanian), Ed. Acad. R.S.R., Bucure¸sti, 1978
  • [23] Ivan, M., Elements of Interpolation Theory, Mediamira Science Publisher, Cluj-Napoca (2004), 61-68
  • [24] Miclau¸s, D., The revision of some results for Bernstein-Stancu type operators, Carpathian J. Math., 28 (2012), No. 2, 289–300
  • [25] Miclau¸s, D., On the GBS Bernstein-Stancu’s type operators, Creat. Math. Inform., 22 (2013), No. 1, 73–80
  • [26] Miclau¸s, D., On the monotonicity property for the sequence of Stancu type polynomials, An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.), 62 (2016), No. 1, 141–149
  • [27] Miclau¸s, D., On the Stancu type bivariate approximation formula, Carpathian J. Math., 32 (2016), No. 1, 103–111
  • [28] Muraru, C., On the monotonicity of Schurer type polynomials, Carpathian J. Math., 21 (2005), No. 1-2, 89–94
  • [29] Pop, O. T. and Barbosu, D., Two dimensional divided differences with multiple knots, An. ¸Stiin¸t. Univ. "Ovidius” Constan ta Ser. Mat.,17 (2009), No. 2, 181–190
  • [30] Popoviciu, T., Sur quelques proprietes des fonctions d’une ou deux variables réelles, Mathematica (1934), 1–85
  • [31] Popoviciu, T., Introduction à la théorie des différences divisées, (French) Bull. Math. Soc. Roumaine Sci., 42 (1940), No. 1, 65–78
  • [32] Rockafeller, R. T. Convex Analysis, Ed. Theta, Bucharest, 1992 ( in Romanian, translated by Ingrid and Daniel Belti¸ta)
  • [33] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Tech. Univ Delft Report, 1962
  • [34] Stancu, D. D., Some Bernstein poiynomials in two variables and their applications,Soviet Math. Dokl., 1 (1961), 1025– 1028
  • [35] Stancu, D. D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal., 1 (1964), 137–163
  • [36] Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, rev. Roum. Math. Pures et Appl., 13 (1968), No. 8, 1173–1194
  • [37] Stancu, D. D., Asupra unei generalizari a polinoamelor lui Bernstein (Romanian), Studia Univ. "Babe¸s-Bolyai", Ser. Mathematica-Physica, (1969), No. 2, 31–45
  • [38] Stancu, D. D. On the remainder of approximation of functions by means of a parameter-dependent linear polynomial operator, Studia Univ. Babe¸s-Bolyai Ser. Math.-Mech., 16 (1971), No. 2, 59–66
  • [39] Stancu, D. D. Application of divided differences to the study of monotonicity of the derivatives of the sequence of Bernstein polynomials, Calcolo 16 (1979), No. 4, 431–445 (1980)
  • [40] Stancu, D. D., Coman, Gh., Agratini, O. and Trâmbi¸ta¸s, R., Analiza numerica ¸si teoria aproximarii, vol. I, Presa Universitar˘a Clujean˘a, Cluj-Napoca, 2001 (in Romanian)
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Dan Bărbosu

Yayımlanma Tarihi 7 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Bărbosu, D. (2018). On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. Constructive Mathematical Analysis, 1(2), 73-87. https://doi.org/10.33205/cma.442151
AMA Bărbosu D. On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. CMA. Kasım 2018;1(2):73-87. doi:10.33205/cma.442151
Chicago Bărbosu, Dan. “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”. Constructive Mathematical Analysis 1, sy. 2 (Kasım 2018): 73-87. https://doi.org/10.33205/cma.442151.
EndNote Bărbosu D (01 Kasım 2018) On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. Constructive Mathematical Analysis 1 2 73–87.
IEEE D. Bărbosu, “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”, CMA, c. 1, sy. 2, ss. 73–87, 2018, doi: 10.33205/cma.442151.
ISNAD Bărbosu, Dan. “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”. Constructive Mathematical Analysis 1/2 (Kasım 2018), 73-87. https://doi.org/10.33205/cma.442151.
JAMA Bărbosu D. On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. CMA. 2018;1:73–87.
MLA Bărbosu, Dan. “On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators”. Constructive Mathematical Analysis, c. 1, sy. 2, 2018, ss. 73-87, doi:10.33205/cma.442151.
Vancouver Bărbosu D. On the Remainder Term of Some Bivariate Approximation Formulas Based on Linear and Positive Operators. CMA. 2018;1(2):73-87.