[1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.
[2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014,
441–452.
[3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type op-
erators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
[4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Asymptotic formulae via Korovkin-type result, Abstract and Applied
Analysis, vol. 2012, Article ID 217464, 12 pages, 2012. https://doi.org/10.1155/2012/217464.
[5] D. Cárdenas-Morales, P. Garrancho ,I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62, 2011, 158–163.
[6] J. P. King, Positive linear operators which preserve x2, Acta. Math. Hungar., 99, 2003, 203–208
Add To My Library
Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$
Year 2019,
Volume: 2 Issue: 3, 98 - 102, 01.09.2019
In the paper we introduce a general class of linear positive approximation processes defined on bounded and unbounded intervals designed using an appropriate function. Voronovskaya type theorems are given for these new constructions. Some examples including well known operators are presented.
[1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.
[2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014,
441–452.
[3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type op-
erators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
[4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Asymptotic formulae via Korovkin-type result, Abstract and Applied
Analysis, vol. 2012, Article ID 217464, 12 pages, 2012. https://doi.org/10.1155/2012/217464.
[5] D. Cárdenas-Morales, P. Garrancho ,I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62, 2011, 158–163.
[6] J. P. King, Positive linear operators which preserve x2, Acta. Math. Hungar., 99, 2003, 203–208
Acar, T., Aral, A., & Raşa, I. (2019). Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. Constructive Mathematical Analysis, 2(3), 98-102. https://doi.org/10.33205/cma.547221
AMA
Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. September 2019;2(3):98-102. doi:10.33205/cma.547221
Chicago
Acar, Tuncer, Ali Aral, and Ioan Raşa. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis 2, no. 3 (September 2019): 98-102. https://doi.org/10.33205/cma.547221.
EndNote
Acar T, Aral A, Raşa I (September 1, 2019) Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. Constructive Mathematical Analysis 2 3 98–102.
IEEE
T. Acar, A. Aral, and I. Raşa, “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”, CMA, vol. 2, no. 3, pp. 98–102, 2019, doi: 10.33205/cma.547221.
ISNAD
Acar, Tuncer et al. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis 2/3 (September2019), 98-102. https://doi.org/10.33205/cma.547221.
JAMA
Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. 2019;2:98–102.
MLA
Acar, Tuncer et al. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis, vol. 2, no. 3, 2019, pp. 98-102, doi:10.33205/cma.547221.
Vancouver
Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. 2019;2(3):98-102.