Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 3, 113 - 115, 14.09.2020
https://doi.org/10.33205/cma.758854

Öz

Kaynakça

  • J. Brzde¸k, D. Popa, I. Ra¸sa and Xu. B: Ulam stability of operators, Academic Press, London(2018).
  • D. S. Marinescu, M. Monea and C. Mortici: Some characterizations of inner product spaces via some geometrical inequalities, Appl. Anal. Discrete Math., 11 (2017), 424-433.
  • N. Minculete: Considerations about the several inequalities in an inner product space, Math. Inequalities, 1 (2018), 155– 161.
  • S. M. S. Nabavi: On mappings which approximately preserve angles, Aequationes Math. 92 (2018), 1079–1090.
  • D. Popa and I. Ra¸sa: Inequalities involving the inner product. JIPAM, 8 (3) (2007), Article 86.

Ulam Stability in Real Inner-Product Spaces

Yıl 2020, Cilt: 3 Sayı: 3, 113 - 115, 14.09.2020
https://doi.org/10.33205/cma.758854

Öz

Roughly speaking an equation is called Ulam stable if near each approximate solution of the equation
there exists an exact solution. In this paper we prove that Cauchy-Schwarz equation, Ortogonality equation and Gram
equation are Ulam stable.

This paper is concerned with the Ulam stability of some classical equations arising in thecontext of inner-product spaces. For the general notion of Ulam stability see, e.q., [1]. Roughlyspeaking an equation is called Ulam stable if near every approximate solution there exists anexact solution; the precise meaning in each case presented in this paper is described in threetheorems. Related results can be found in [2, 3, 4]. See also [5] for some inequalities in innerproduct spaces.

Kaynakça

  • J. Brzde¸k, D. Popa, I. Ra¸sa and Xu. B: Ulam stability of operators, Academic Press, London(2018).
  • D. S. Marinescu, M. Monea and C. Mortici: Some characterizations of inner product spaces via some geometrical inequalities, Appl. Anal. Discrete Math., 11 (2017), 424-433.
  • N. Minculete: Considerations about the several inequalities in an inner product space, Math. Inequalities, 1 (2018), 155– 161.
  • S. M. S. Nabavi: On mappings which approximately preserve angles, Aequationes Math. 92 (2018), 1079–1090.
  • D. Popa and I. Ra¸sa: Inequalities involving the inner product. JIPAM, 8 (3) (2007), Article 86.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Bianca Mosnegutu

Alexandra Mǎdutǎ Bu kişi benim

Yayımlanma Tarihi 14 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 3

Kaynak Göster

APA Mosnegutu, B., & Mǎdutǎ, A. (2020). Ulam Stability in Real Inner-Product Spaces. Constructive Mathematical Analysis, 3(3), 113-115. https://doi.org/10.33205/cma.758854
AMA Mosnegutu B, Mǎdutǎ A. Ulam Stability in Real Inner-Product Spaces. CMA. Eylül 2020;3(3):113-115. doi:10.33205/cma.758854
Chicago Mosnegutu, Bianca, ve Alexandra Mǎdutǎ. “Ulam Stability in Real Inner-Product Spaces”. Constructive Mathematical Analysis 3, sy. 3 (Eylül 2020): 113-15. https://doi.org/10.33205/cma.758854.
EndNote Mosnegutu B, Mǎdutǎ A (01 Eylül 2020) Ulam Stability in Real Inner-Product Spaces. Constructive Mathematical Analysis 3 3 113–115.
IEEE B. Mosnegutu ve A. Mǎdutǎ, “Ulam Stability in Real Inner-Product Spaces”, CMA, c. 3, sy. 3, ss. 113–115, 2020, doi: 10.33205/cma.758854.
ISNAD Mosnegutu, Bianca - Mǎdutǎ, Alexandra. “Ulam Stability in Real Inner-Product Spaces”. Constructive Mathematical Analysis 3/3 (Eylül 2020), 113-115. https://doi.org/10.33205/cma.758854.
JAMA Mosnegutu B, Mǎdutǎ A. Ulam Stability in Real Inner-Product Spaces. CMA. 2020;3:113–115.
MLA Mosnegutu, Bianca ve Alexandra Mǎdutǎ. “Ulam Stability in Real Inner-Product Spaces”. Constructive Mathematical Analysis, c. 3, sy. 3, 2020, ss. 113-5, doi:10.33205/cma.758854.
Vancouver Mosnegutu B, Mǎdutǎ A. Ulam Stability in Real Inner-Product Spaces. CMA. 2020;3(3):113-5.